7 research outputs found

    Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    Get PDF
    BACKGROUND: Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. METHODS: We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. RESULTS: In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular density within the tumors. By contrast, transient exogenous treatment of MDA-MB-231 xenografts with rhSulf2 was not sufficient to inhibit or reverse tumor growth. CONCLUSION: These data indicate that in vivo progression of human breast cancer xenografts can be inhibited with sulfatase expression, and therapeutic effect requires constant delivery at the tumor site. Our results support a direct effect of sulfatases on tumor growth or invasion, rather than an effect in the stromal compartment

    Role of Genes That Modulate Host Immune Responses in the Immunogenicity and Pathogenicity of Vaccinia Virus

    No full text
    Poxvirus vaccine vectors, although capable of eliciting potent immune responses, pose serious health risks in immunosuppressed individuals. We therefore constructed five novel recombinant vaccinia virus vectors which contained overlapping deletions of coding regions for the B5R, B8R, B12R, B13R, B14R, B16R, B18R, and B19R immunomodulatory gene products and assessed them for both immunogenicity and pathogenicity. All five of these novel vectors elicited both cellular and humoral immunity to the inserted HIV-BH10 env comparable to that induced by the parental Wyeth strain vaccinia virus. However, deletion of these immunomodulatory genes did not increase the immunogenicity of these vectors compared with the parental vaccinia virus. Furthermore, four of these vectors were slightly less virulent and one was slightly more virulent than the Wyeth strain virus in neonatal mice. Attenuated poxviruses have potential use as safer alternatives to current replication-competent vaccinia virus. Improved vaccinia virus vectors can be generated by deleting additional genes to achieve a more significant viral attenuation
    corecore