64 research outputs found

    Association of Progressive CD4+ T Cell Decline in SIV Infection with the Induction of Autoreactive Antibodies

    Get PDF
    The progressive decline of CD4+ T cells is a hallmark of disease progression in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection. Whereas the acute phase of the infection is dominated by virus-mediated depletion of memory CD4+ T cells, chronic infection is often associated with a progressive decline of total CD4+ T cells, including the naïve subset. The mechanism of this second phase of CD4+ T cell loss is unclear and may include immune activation–induced cell death, immune-mediated destruction, and regenerative or homeostatic failure. We studied patterns of CD4+ T cell subset depletion in blood and tissues in a group of 20 rhesus macaques inoculated with derivatives of the pathogenic SIVsmE543-3 or SIVmac239. Phenotypic analysis of CD4+ T cells demonstrated two patterns of CD4+ T cell depletion, primarily affecting either naïve or memory CD4+ T cells. Progressive decline of total CD4+ T cells was observed only in macaques with naïve CD4+ T cell depletion (ND), though the depletion of memory CD4+ T cells was profound in macaques with memory CD4+ T cell depletion (MD). ND macaques exhibited lower viral load and higher SIV-specific antibody responses and greater B cell activation than MD macaques. Depletion of naïve CD4+ T cells was associated with plasma antibodies autoreactive with CD4+ T cells, increasing numbers of IgG-coated CD4+ T cells, and increased incidence of autoreactive antibodies to platelets (GPIIIa), dsDNA, and phospholipid (aPL). Consistent with a biological role of these antibodies, these latter antibodies were accompanied by clinical features associated with autoimmune disorders, thrombocytopenia, and catastrophic thrombotic events. More importantly for AIDS pathogenesis, the level of autoreactive antibodies significantly correlated with the extent of naïve CD4+ T cell depletion. These results suggest an important role of autoreactive antibodies in the CD4+ T cell decline observed during progression to AIDS

    Degenerate recognition of MHC class I molecules with Bw4 and Bw6 motifs by a killer cell Ig-like receptor 3DL expressed by macaque NK cells

    Get PDF
    The killer cell immunoglobulin-like receptors (KIRs) expressed on the surface of natural killer (NK) cells recognize specific major histocompatibility complex class I (MHC-I) molecules and regulate NK cell activities against pathogen-infected cells and neoplasia. In human immunodeficiency virus (HIV) infection, survival is linked to host KIR and MHC-I genotypes. In the simian immunodeficiency virus (SIV) macaque model, however, the role of NK cells is unclear due to the lack of information on KIR-MHC interactions. Here, we describe the first characterization of a KIR-MHC interaction in pig-tailed macaques (Macaca nemestrina). Initially, we identified three distinct subsets of macaque NK cells that stained ex vivo with macaque MHC-I tetramers loaded with SIV peptides. We then cloned cDNAs corresponding to 15 distinct KIR3D alleles. One of these, KIR049-4, was an inhibitory KIR3DL that bound MHC-I tetramers and prevented activation, degranulation and cytokine production by macaque NK cells after engagement with specific MHC-I molecules on the surface of target cells. Furthermore, KIR049-4 recognized a broad range of MHC-I molecules carrying not only the Bw4 motif but also Bw6 and non-Bw4/Bw6 motifs. This degenerate, yet peptide-dependent, MHC reactivity differs markedly from the fine specificity of human KIRs

    Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant

    No full text
    Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic host range, the X-MLVs are also present in the pre-leukemic tissues. We analyzed two such isolates from the AKR mice to identify their ERV progenitors and to look for evidence of recombination. AKR40 resembles the active X-ERV Bxv1, while AKR6 has a Bxv1-like backbone with substitutions that alter the long terminal repeat (LTR) enhancer and the envelope (env). AKR6 has a modified xenotropic host range, and its Env residue changes all lie outside of the domain that governs the receptor choice. The AKR6 segment spanning the two substitutions, but not the entire AKR6 env-LTR, exists as an ERV, termed Xmv67, in AKR, but not in the C57BL/6 mice. This suggests that AKR6 is the product of one, not two, recombination events. Xmv67 originated in the Asian mice. These data indicate that the recombinant X-MLVs that can be generated during lymphomagenesis, describe a novel X-ERV subtype found in the AKR genome, but not in the C57BL/6 reference genome, and identify residues in the envelope C-terminus that may influence the host range

    Characterization of a Polytropic Murine Leukemia Virus Proviral Sequence Associated with the Virus Resistance Gene Rmcf of DBA/2 Mice

    No full text
    The DBA/2 mouse Rmcf gene is responsible for in vivo and in vitro resistance to infection by the polytropic mink cell focus-forming (MCF) virus subgroup of murine leukemia viruses (MLVs). Previous studies suggested that Rmcf resistance is mediated by expression of an interfering MCF MLV envelope (Env) gene. To characterize this env gene, we examined resistance in crosses between Rmcf(r) DBA/2 mice and Mus castaneus, a species that lacks endogenous MCF env sequences. In backcross progeny, inheritance of Rmcf resistance correlated with inheritance of a specific endogenous MCF virus env-containing 4.6-kb EcoRI fragment. This fragment was present in the DBA/2N substrain with Rmcf-mediated resistance but not in virus-susceptible DBA/2J substrain mice. This fragment contains a provirus with a 5′ long terminal repeat and the 5′ half of env; the gag and pol genes have been partially deleted. The Env sequence is identical to that of a highly immunogenic viral glycoprotein expressed in the DBA/2 cell line L5178Y and closely resembles the env genes of modified polytropic proviruses. The coding sequence for the full-length Rmcf Env surface subunit was amplified from DNAs from virus-resistant backcross mice and was cloned into an expression vector. NIH 3T3 and BALB 3T3 cells stably transfected with this construct showed significant resistance to infection by MCF MLV but not by amphotropic MLV. This study identifies an Rmcf-linked MCF provirus and indicates that, like the ecotropic virus resistance gene Fv4, Rmcf may mediate resistance through an interference mechanism

    The ITAM in Nef Influences Acute Pathogenesis of AIDS-Inducing Simian Immunodeficiency Viruses SIVsm and SIVagm without Altering Kinetics or Extent of Viremia

    No full text
    The role of the immunoreceptor tyrosine-based activation motif (ITAM) that is unique to the Nef protein of the acutely pathogenic simian immunodeficiency virus SIVsmPBj was studied in the context of two AIDS-inducing simian immunodeficiency virus molecular clones. NefY(+) variants of SIVagm9063-2 and SIVsmE543-3 replicated in and induced proliferation of unstimulated pig-tailed macaque PBMC. The pathogenesis of the NefY(+) and NefY(−) clones of SIVagm9063-2, SIVsmE543-3, and PBj6.6 were evaluated by intravenous inoculation of pig-tailed macaques (Macaca nemestrina). Introduction of the ITAM did not increase plasma viral RNA levels nor alter the kinetics of viremia compared with the NefY(−) versions of each clone. Clinical symptoms were not observed in animals inoculated with the NefY(−) variants. In contrast, characteristic PBj symptoms were observed in animals inoculated with any of the three NefY(+) clones. Blunting and fusion of intestinal villi and multifocal infiltration of mononuclear cells were observed in the gastrointestinal tracts of macaques inoculated with the NefY(+) versions. Lesions were associated with active viral replication, as demonstrated by simian immunodeficiency virus-specific in situ hybridization. However, only the macaque inoculated with wild-type NefY(+) SIVsmPBj developed fatal disease; lesions were more widespread and severe in this animal. A switch to macrophages as a viral reservoir and the presence of interleukin-6 in plasma was unique to the macaque infected with PBj6.6. Overall, these data suggest that the ITAM in SIV Nef alters the pathogenesis of simian immunodeficiency virus regardless of the viral background. The change in pathogenesis occurs without enhancement of viral replication. However, NefY(+) variants of SIVagm and SIVsm did not fully recapitulate the virulence of SIVsmPBj, implicating additional viral factors in this unique virus pathogenesis
    • …
    corecore