9 research outputs found

    Legumain regulates advanced prostate cancer via HSD17B4

    No full text

    Generalized network theory of physical two-dimensional systems

    No full text
    The properties of a wide range of two-dimensional network materials are investigated by developing a generalized network theory. The methods developed are shown to be applicable to a wide range of systems generated from both computation and experiment; incorporating atomistic materials, foams, fullerenes, colloidal monolayers, and geopolitical regions. The ring structure in physical networks is described in terms of the node degree distribution and the assortativity. These quantities are linked to previous empirical measures such as Lemaître's law and the Aboav-Weaire law. The effect on these network properties is explored by systematically changing the coordination environments, topologies, and underlying potential model of the physical system

    H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ

    No full text
    The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs

    TBX2 acts as a potent transcriptional silencer of tumour suppressor genes through interaction with the CoREST complex to sustain the proliferation of breast cancers

    No full text
    Chromosome 17q23 amplification occurs in 20% of primary breast tumours and is associated with poor outcome. The TBX2 gene is located on 17q23 and is often over-expressed in this breast tumour subset. TBX2 is an anti-senescence gene, promoting cell growth and survival through repression of Tumour Suppressor Genes (TSGs), such as NDRG1 and CST6. Previously we found that TBX2 cooperates with the PRC2 complex to repress several TSGs, and that PRC2 inhibition restored NDRG1 expression to impede cellular proliferation. Here, we now identify CoREST proteins, LSD1 and ZNF217, as novel interactors of TBX2. Genetic or pharmacological targeting of CoREST emulated TBX2 loss, inducing NDRG1 expression and abolishing breast cancer growth in vitro and in vivo. Furthermore, we uncover that TBX2/CoREST targeting of NDRG1 is achieved by recruitment of TBX2 to the NDRG1 promoter by Sp1, the abolishment of which resulted in NDRG1 upregulation and diminished cancer cell proliferation. Through ChIP-seq we reveal that 30% of TBX2-bound promoters are shared with ZNF217 and identify novel targets repressed by TBX2/CoREST; of these targets a lncRNA, LINC00111, behaves as a negative regulator of cell proliferation. Overall, these data indicate that inhibition of CoREST proteins represents a promising therapeutic intervention for TBX2-addicted breast tumours

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor

    Bibliography

    No full text
    corecore