99 research outputs found

    New insights into name category-related effects: is the Age of Acquisition a possible factor?

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Electrophysiological, hemodynamic and neuropsychological studies have provided evidence of dissociation in the way words belonging to different semantic categories (e.g., animals, tools, actions) are represented in the brain. The aim of the present study was to investigate whether a word's semantic domain may affect the amplitude and latency of ERP components, independently of any other factor. Methods: EEGs were recorded from 16 volunteers engaged in a lexical decision task (word/nonword discrimination) involving 100 words (flora and fauna names). This task allowed us to evaluate differences in processing between words belonging to different categories (fauna vs. flora) independently of task demands. All stimuli were balanced in terms of length, frequency of occurrence, familiarity and imageability. Low Resolution Electromagnetic Tomography (LORETA) was performed on ERP difference waves of interest. Results: Our findings showed that the two categories were discriminated as early as 200 ms poststimulus, with larger responses to flora names over the left occipito-temporal areas, namely BA3

    The key role of the right posterior fusiform gyrus in music reading: an electrical neuroimaging study on 90 readers

    Get PDF
    IntroductionIn this study, we employed a combined electromagnetic recording technique, i.e., electroencephalogram (EEG)/event-related potentials (ERPs) plus standardized weighted low-resolution electromagnetic tomography (swLORETA), to investigate the neural mechanism subserving the orthographic processing of symbols in language and music. While much is known about word processing, the current literature remains inconclusive regarding music reading, as its mechanisms appear to be left lateralized in some cases (as suggested by music-alexia clinical case reports) and either right-sided or bilateral in others, depending on the study and the methodology used.MethodsIn this study, 90 right-handed participants with varying musical abilities and sexes performed an attentional selection task that involved the recognition of target letters and musical notes, while their EEG signals were recorded from 128 sites.ResultsThe occipito/temporal N170 component of ERPs (170–210 ms) was found strictly left-sided during letter selection and bilateral (with a right-hemispheric tendency) during note selection. Source reconstruction data indicated the preponderant engagement of the right posterior fusiform gyrus (BA19) for processing musical notes. Also involved were other brain regions belonging to the word reading circuit, including the left-sided visual word form area (VWFA) and frontal eye-fields (FEFs).DiscussionThis finding provides an explanation for the infrequent appearance of musical alexia cases (previously observed only in patients with left hemispheric lesions). It also suggests how musical literacy could be a rehabilitative and preventive factor for dyslexia, by promoting neuroplasticity and bilaterality in the reading areas

    Neural Markers of Opposite-Sex Bias in Face Processing

    Get PDF
    Some behavioral and neuroimaging studies suggest that adults prefer to view attractive faces of the opposite sex more than attractive faces of the same sex. However, unlike the other-race face effect (Caldara et al., 2004), little is known regarding the existence of an opposite-/same-sex bias in face processing. In this study, the faces of 130 attractive male and female adults were foveally presented to 40 heterosexual university students (20 men and 20 women) who were engaged in a secondary perceptual task (landscape detection). The automatic processing of face gender was investigated by recording ERPs from 128 scalp sites. Neural markers of opposite- vs. same-sex bias in face processing included larger and earlier centro–parietal N400s in response to faces of the opposite sex and a larger late positivity (LP) to same-sex faces. Analysis of intra-cortical neural generators (swLORETA) showed that facial processing-related (FG, BA37, BA20/21) and emotion-related brain areas (the right parahippocampal gyrus, BA35; uncus, BA36/38; and the cingulate gyrus, BA24) had higher activations in response to opposite- than same-sex faces. The results of this analysis, along with data obtained from ERP recordings, support the hypothesis that both genders process opposite-sex faces differently than same-sex faces. The data also suggest a hemispheric asymmetry in the processing of opposite-/same-sex faces, with the right hemisphere involved in processing same-sex faces and the left hemisphere involved in processing faces of the opposite sex. The data support previous literature suggesting a right lateralization for the representation of self-image and body awareness

    Neural Coding of Cooperative vs. Affective Human Interactions: 150 ms to Code the Action's Purpose

    Get PDF
    The timing and neural processing of the understanding of social interactions was investigated by presenting scenes in which 2 people performed cooperative or affective actions. While the role of the human mirror neuron system (MNS) in understanding actions and intentions is widely accepted, little is known about the time course within which these aspects of visual information are automatically extracted. Event-Related Potentials were recorded in 35 university students perceiving 260 pictures of cooperative (e.g., 2 people dragging a box) or affective (e.g., 2 people smiling and holding hands) interactions. The action's goal was automatically discriminated at about 150–170 ms, as reflected by occipito/temporal N170 response. The swLORETA inverse solution revealed the strongest sources in the right posterior cingulate cortex (CC) for affective actions and in the right pSTS for cooperative actions. It was found a right hemispheric asymmetry that involved the fusiform gyrus (BA37), the posterior CC, and the medial frontal gyrus (BA10/11) for the processing of affective interactions, particularly in the 155–175 ms time window. In a later time window (200–250 ms) the processing of cooperative interactions activated the left post-central gyrus (BA3), the left parahippocampal gyrus, the left superior frontal gyrus (BA10), as well as the right premotor cortex (BA6). Women showed a greater response discriminative of the action's goal compared to men at P300 and anterior negativity level (220–500 ms). These findings might be related to a greater responsiveness of the female vs. male MNS. In addition, the discriminative effect was bilateral in women and was smaller and left-sided in men. Evidence was provided that perceptually similar social interactions are discriminated on the basis of the agents' intentions quite early in neural processing, differentially activating regions devoted to face/body/action coding, the limbic system and the MNS

    Observation of Static Pictures of Dynamic Actions Enhances the Activity of Movement-Related Brain Areas

    Get PDF
    Physiological studies of perfectly still observers have shown interesting correlations between increasing effortfulness of observed actions and increases in heart and respiration rates. Not much is known about the cortical response induced by observing effortful actions. The aim of this study was to investigate the time course and neural correlates of perception of implied motion, by presenting 260 pictures of human actions differing in degrees of dynamism and muscular exertion. ERPs were recorded from 128 sites in young male and female adults engaged in a secondary perceptual task.Our results indicate that even when the stimulus shows no explicit motion, observation of static photographs of human actions with implied motion produces a clear increase in cortical activation, manifest in a long-lasting positivity (LP) between 350–600 ms that is much greater to dynamic than less dynamic actions, especially in men. A swLORETA linear inverse solution computed on the dynamic-minus-static difference wave in the time window 380–430 ms showed that a series of regions was activated, including the right V5/MT, left EBA, left STS (BA38), left premotor (BA6) and motor (BA4) areas, cingulate and IF cortex.Overall, the data suggest that corresponding mirror neurons respond more strongly to implied dynamic than to less dynamic actions. The sex difference might be partially cultural and reflect a preference of young adult males for highly dynamic actions depicting intense muscular activity, or a sporty context

    Face Coding Is Bilateral in the Female Brain

    Get PDF
    Background: It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent. Methodology/Principal Findings: In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women. Conclusions/Significance: LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to fac

    How Are ‘Barack Obama’ and ‘President Elect’ Differentially Stored in the Brain? An ERP Investigation on the Processing of Proper and Common Noun Pairs

    Get PDF
    BACKGROUND:One of the most debated issues in the cognitive neuroscience of language is whether distinct semantic domains are differentially represented in the brain. Clinical studies described several anomic dissociations with no clear neuroanatomical correlate. Neuroimaging studies have shown that memory retrieval is more demanding for proper than common nouns in that the former are purely arbitrary referential expressions. In this study a semantic relatedness paradigm was devised to investigate neural processing of proper and common nouns. METHODOLOGY/PRINCIPAL FINDINGS:780 words (arranged in pairs of Italian nouns/adjectives and the first/last names of well known persons) were presented. Half pairs were semantically related ("Woody Allen" or "social security"), while the others were not ("Sigmund Parodi" or "judicial cream"). All items were balanced for length, frequency, familiarity and semantic relatedness. Participants were to decide about the semantic relatedness of the two items in a pair. RTs and N400 data suggest that the task was more demanding for common nouns. The LORETA neural generators for the related-unrelated contrast (for proper names) included the left fusiform gyrus, right medial temporal gyrus, limbic and parahippocampal regions, inferior parietal and inferior frontal areas, which are thought to be involved in the conjoined processing a familiar face with the relevant episodic information. Person name was more emotional and sensory vivid than common noun semantic access. CONCLUSIONS/SIGNIFICANCE:When memory retrieval is not required, proper name access (conspecifics knowledge) is not more demanding. The neural generators of N400 to unrelated items (unknown persons and things) did not differ as a function of lexical class, thus suggesting that proper and common nouns are not treated differently as belonging to different grammatical classes

    Hemispheric Asymmetry in Visual Processing: An ERP Study on Spatial Frequency Gratings

    No full text
    A hemispheric asymmetry for the processing of global versus local visual information is known. In this study, we investigated the existence of a hemispheric asymmetry for the visual processing of low versus high spatial frequency gratings. The event-related potentials were recorded in a group of healthy right-handed volunteers from 30 scalp sites. Six types of stimuli (1.5, 3 and 6 c/deg gratings) were randomly flashed 180 times in the left and right upper hemifields. The stimulus duration was 80 ms, and the interstimulus interval (ISI) ranged between 850 and 1000 ms. Participants paid attention and responded to targets based on their spatial frequency and location. The C1 and P1 visual responses, as well as a later selection negativity and a P300 component of event-related potentials (ERPs), were quantified and subjected to repeated-measure analyses of variance (ANOVAs). Overall, the performance was faster for the right visual field (RVF), thus suggesting a left hemispheric advantage for the attentional selection of local elements. Similarly, the analysis of the mean area amplitude of the C1 (60–110 ms) sensory response showed a stronger attentional effect (F+L+ vs. F−L+) at the left occipital areas, thus suggesting the sensory nature of this hemispheric asymmetry
    • …
    corecore