11,494 research outputs found

    Utilizing Online Software for Surveys

    Full text link
    In institutions where assessment is part of our everyday vocabulary, we are always looking for ways to collect the data that we need in a more efficient manner. Online surveys may be one answer. There are some major advantages in using online surveys but there are also some critical disadvantages especially concerning representative population samples. In order to make an informed decision, we need to determine if and how these advantages and disadvantages affect our situation. We also need to understand what features are offered in these programs so that we can select a program that meets our own needs and budgets

    Measurement of heavy-flavor production in Pb-Pb collisions at the LHC with ALICE

    Full text link
    A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) has been built in order to study the Quark-Gluon Plasma (QGP) created in high-energy nuclear collisions. As heavy-flavor quarks are produced at the early stage of the collision, they serve as sensitive probes for the QGP. The ALICE detector with its capabilities such as particle identification, secondary vertexing and tracking in a high multiplicity environment can address, among other measurements, the heavy-flavor sector in heavy-ion collisions. We present latest results on the measurement of the nuclear modification factor of open heavy-flavors as well as on the measurement of open heavy-flavor azimuthal anisotropy v2 in Pb-Pb collisions at sqrt(s) = 2.76 TeV. Open charmed hadrons are reconstructed in the hadronic decay channels D0->Kpi, D+->Kpipi, and D*+->D0pi applying a secondary decay-vertex topology. Complementary measurements are performed by detecting electrons (muons) from semi-leptonic decays of open heavy-flavor hadrons in the central (forward) rapidity region.Comment: 10 pages, 6 figures. Talk given by Robert Grajcarek at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    The Laser of the ALICE Time Projection Chamber

    Get PDF
    The large TPC (95m395 \mathrm{m}^3) of the ALICE detector at the CERN LHC was commissioned in summer 2006. The first tracks were observed both from the cosmic ray muons and from the laser rays injected into the TPC. In this article the basic principles of operating the 266nm266 \mathrm{nm} lasers are presented, showing the installation and adjustment of the optical system and describing the control system. To generate the laser tracks, a wide laser beam is split into several hundred narrow beams by fixed micro-mirrors at stable and known positions throughout the TPC. In the drift volume, these narrow beams generate straight tracks at many angles. Here we describe the generation of the first tracks and compare them with simulations.Comment: QM06 poster proceedings, 6 pages, 4 figure

    Formal rigidity of the Witt and Virasoro Algebra

    Full text link
    The formal rigidity of the Witt and Virasoro algebras was first established by the author in [4]. The proof was based on some earlier results of the author and Goncharowa, and was not presented there. In this paper we give an elementary proof of these facts.Comment: 5 page

    Level-1 jet trigger hardware for the ALICE electromagnetic calorimeter at LHC

    Full text link
    The ALICE experiment at the LHC is equipped with an electromagnetic calorimeter (EMCal) designed to enhance its capabilities for jet measurement. In addition, the EMCal enables triggering on high energy jets. Based on the previous development made for the Photon Spectrometer (PHOS) level-0 trigger, a specific electronic upgrade was designed in order to allow fast triggering on high energy jets (level-1). This development was made possible by using the latest generation of FPGAs which can deal with the instantaneous incoming data rate of 26 Gbit/s and process it in less than 4 {\mu}s.Comment: proceeding of TWEPP-10 at Aachen. 6 pages, 4 figure

    Falling liquid films with blowing and suction

    Get PDF
    Flow of a thin viscous film down a flat inclined plane becomes unstable to long wave interfacial fluctuations when the Reynolds number based on the mean film thickness becomes larger than a critical value (this value decreases as the angle of inclination with the horizontal increases, and in particular becomes zero when the plate is vertical). Control of these interfacial instabilities is relevant to a wide range of industrial applications including coating processes and heat or mass transfer systems. This study considers the effect of blowing and suction through the substrate in order to construct from first principles physically realistic models that can be used for detailed passive and active control studies of direct relevance to possible experiments. Two different long-wave, thin-film equations are derived to describe this system; these include the imposed blowing/suction as well as inertia, surface tension, gravity and viscosity. The case of spatially periodic blowing and suction is considered in detail and the bifurcation structure of forced steady states is explored numerically to predict that steady states cease to exist for sufficiently large suction speeds since the film locally thins to zero thickness giving way to dry patches on the substrate. The linear stability of the resulting nonuniform steady states is investigated for perturbations of arbitrary wavelengths, and any instabilities are followed into the fully nonlinear regime using time-dependent computations. The case of small amplitude blowing/suction is studied analytically both for steady states and their stability. Finally, the transition between travelling waves and non-uniform steady states is explored as the suction amplitude increases
    • 

    corecore