9,877 research outputs found

    Pulsar Physics and GLAST

    Get PDF
    Rotation-powered pulsars are excellent laboratories for study of particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields, high densities and relativity. I will review the outstanding questions in pulsar physics and the prospects for finding answers with GLAST LAT observations. LAT observations should significantly increase the number of detected radio-loud and radio-quiet gamma-ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, will measure the high-energy spectrum and the shape of spectral cutoffs and determine pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed.Comment: 5 pages, 2 figures, to appear in Proc. of First GLAST Symposium (Stanford, Feb. 5-8, 2007), eds. S.Ritz, P.F. Michelson, and C.Meegan, AIP Conf. Pro

    The Neutron Star Zoo

    Get PDF
    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.Comment: 15 pages, 8 figure, to be published in Frontiers of Physic

    Gamma rays from pulsar wind shock acceleration

    Get PDF
    A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed

    Multi-strange baryon measurements at LHC energies, with the ALICE experiment

    Full text link
    The status of the charged multi-strange baryon analysis (Xi-, anti-Xi+, Omega-, anti-Omega+) at LHC energies is presented. This report is based on the results obtained with ALICE (A Large Ion Collider Experiment), profiting from the characteristic cascade-decay topology. A special attention is drawn to the early pp data-taking period (2009-2010) and subsequently, on the uncorrected pT-spectra extracted at mid-rapidity for centre of mass energies of 0.9 TeV and 7 TeV.Comment: 4 pages, 5 figures, Hot Quarks 2010 proceedings, La Londe Les Maures, France, June 2010 (to be published in Journal of Physics: Conference Series

    Gamma-ray and X-ray luminosities from spin-powered pulsars in the full polar cap cascade model

    Get PDF
    We modify the conventional curvature radiation (inverse Compton scattering) + synchrotron radiation polar cap cascade model by including the inverse Compton scattering of the higher generation pairs. Within the framework of the space-charge-limited-flow acceleration model with frame-dragging proposed by Harding & Muslimov (1998), such a full polar cap cascade scenario can well reproduce the Lγ(Lsd)1/2L_\gamma \propto (L_{\rm sd})^{1/2} and the Lx103LsdL_x \sim 10^{-3} L_{\rm sd} dependences observed from the known spin-powered pulsars. According to this model, the ``pulsed'' soft ROSAT-band X-rays from most of the millisecond pulsars might be of thermal origin, if there are no strong multipole magnetic components near their surfaces.Comment: To appear in Proc. 5th Compton Symposium, Portsmouth, New Hampshire, concise version of the ApJ pape

    Positron annihilation in gamma-ray bursts

    Get PDF
    Emission features appear at energies of 350 to 450 keV in the spectra of a number of gamma ray burst sources. These features were interpreted as electron-positron annihilation lines, redshifted by the gravitational field near the surface of a neutron star. Evidence that gamma ray bursts originate at neutron stars with magnetic field strengths of approx. 10(exp 12) Gauss came from recent observations of cyclotron scattering harmonics in the spectra of two bursts. Positrons could be produced in gamma ray burst sources either by photon-photon pair production or by one-photon pair production in a strong magnetic field. The annihilation of positrons is affected by the presence of a strong neutron star magnetic field in several ways. The relaxation of transverse momentum conservation causes an intrinsic broadening of the two-photon annihilation line and there is a decrease in the annihilation cross section below the free-space value. An additional channel for one-photon annihilation also becomes possible in high magnetic fields. The physics of pair production and annihilation near strongly magnetized neutron stars will be reviewed. Results from a self-consistent model for non-thermal synchrotron radiation and pair annihilation are beginning to identify the conditions required to produce observable annihilation features from strongly magnetized plasmas
    corecore