70 research outputs found

    Personalized Ranking for Context-Aware Venue Suggestion

    Full text link
    Making personalized and context-aware suggestions of venues to the users is very crucial in venue recommendation. These suggestions are often based on matching the venues' features with the users' preferences, which can be collected from previously visited locations. In this paper we present a novel user-modeling approach which relies on a set of scoring functions for making personalized suggestions of venues based on venues content and reviews as well as users context. Our experiments, conducted on the dataset of the TREC Contextual Suggestion Track, prove that our methodology outperforms state-of-the-art approaches by a significant margin.Comment: The 32nd ACM SIGAPP Symposium On Applied Computing (SAC), Marrakech, Morocco, April 4-6, 201

    System Initiative Prediction for Multi-turn Conversational Information Seeking

    Get PDF
    Identifying the right moment for a system to take the initiative is essential to conversational information seeking (CIS). Existing studies have extensively studied the clarification need prediction task, i.e., predicting when to ask a clarifying question, however, it only covers one specific system-initiative action. We define the system initiative prediction (SIP) task as predicting whether a CIS system should take the initiative at the next turn. Our analysis reveals that for effective modeling of SIP, it is crucial to capture dependencies between adjacent user-system initiative-taking decisions. We propose to model SIP by CRFs. Due to their graphical nature, CRFs are effective in capturing such dependencies and have greater transparency than more complex methods, e.g., LLMs. Applying CRFs to SIP comes with two challenges: (i) CRFs need to be given the unobservable system utterance at the next turn, and (ii) they do not explicitly model multi-turn features. We model SIP as an input-incomplete sequence labeling problem and propose a multiturn system initiative predictor (MuSIc) that has (i) prior-posterior inter-utterance encoders to eliminate the need to be given the unobservable system utterance, and (ii) a multi-turn feature-aware CRF layer to incorporate multi-turn features into the dependencies between adjacent initiative-taking decisions. Experiments show that MuSIc outperforms LLM-based baselines including LLaMA, achieving state-of-the-art results on SIP. We also show the benefits of SIP on clarification need prediction and action prediction.</p

    Understanding and Predicting User Satisfaction with Conversational Recommender Systems

    Get PDF
    User satisfaction depicts the effectiveness of a system from the user’s perspective. Understanding and predicting user satisfaction is vital for the design of user-oriented evaluation methods for conversational recommender systems (CRSs). Current approaches rely on turn-level satisfaction ratings to predict a user’s overall satisfaction with CRS. These methods assume that all users perceive satisfaction similarly, failing to capture the broader dialogue aspects that influence overall user satisfaction. We investigate the effect of several dialogue aspects on user satisfaction when interacting with a CRS. To this end, we annotate dialogues based on six aspects (i.e., relevance, interestingness, understanding, task-completion, interest-arousal, and efficiency) at the turn and dialogue levels. We find that the concept of satisfaction varies per user. At the turn level, a system’s ability to make relevant recommendations is a significant factor in satisfaction. We adopt these aspects as features for predicting response quality and user satisfaction. We achieve an F1-score of 0.80 in classifying dissatisfactory dialogues, and a Pearson’s r of 0.73 for turn-level response quality estimation, demonstrating the effectiveness of the proposed dialogue aspects in predicting user satisfaction and being able to identify dialogues where the system is failing

    Performance Prediction for Conversational Search Using Perplexities of Query Rewrites

    Get PDF
    We consider query performance prediction (QPP) task for conversational search (CS), i.e., to estimate the retrieval quality for queries in multi-turn conversations. We reuse QPP methods from ad-hoc search for CS by feeding them self-contained query rewrites generated by T5. Our experiments on three CS datasets show that (i) lower query rewriting quality may lead to worse QPP performance, and (ii) incorporating query rewriting quality (as measured by perplexity) improves the effectiveness of QPP methods for CS if the query rewriting quality is limited. Our implementation is publicly available at https://github.com/ChuanMeng/QPP4CS.</p

    Towards Building Economic Models of Conversational Search

    Get PDF
    Various conceptual and descriptive models of conversational search have been proposed in the literature -- while useful, they do not provide insights into how interaction between the agent and user would change in response to the costs and benefits of the different interactions. In this paper, we develop two economic models of conversational search based on patterns previously observed during conversational search sessions, which we refer to as: Feedback First where the agent asks clarifying questions then presents results, and Feedback After where the agent presents results, and then asks follow up questions. Our models show that the amount of feedback given/requested depends on its efficiency at improving the initial or subsequent query and the relative cost of providing said feedback. This theoretical framework for conversational search provides a number of insights that can be used to guide and inform the development of conversational search agents. However, empirical work is needed to estimate the parameters in order to make predictions specific to a given conversational search setting.Comment: To appear in ECIR 202

    Mental disorders on online social media through the lens of language and behaviour:Analysis and visualisation

    Get PDF
    Due to the worldwide accessibility to the Internet along with the continuous advances in mobile technologies, physical and digital worlds have become completely blended, and the proliferation of social media platforms has taken a leading role over this evolution. In this paper, we undertake a thorough analysis towards better visualising and understanding the factors that characterise and differentiate social media users affected by mental disorders. We perform different experiments studying multiple dimensions of language, including vocabulary uniqueness, word usage, linguistic style, psychometric attributes, emotions' co-occurrence patterns, and online behavioural traits, including social engagement and posting trends. Our findings reveal significant differences on the use of function words, such as adverbs and verb tense, and topic-specific vocabulary, such as biological processes. As for emotional expression, we observe that affected users tend to share emotions more regularly than control individuals on average. Overall, the monthly posting variance of the affected groups is higher than the control groups. Moreover, we found evidence suggesting that language use on micro-blogging platforms is less distinguishable for users who have a mental disorder than other less restrictive platforms. In particular, we observe on Twitter less quantifiable differences between affected and control groups compared to Reddit.Comment: To appear in Elsevier Information Processing & Managemen
    • …
    corecore