17 research outputs found
Association of glutathione S-transferase polymorphisms with the severity of mustard lung
Introduction: Glutathione S-transferase (GST) is one of the major detoxifiers in alveoli. Polymorphism in GST genes can influence the ability of individuals to suppress oxidative stress and inflammation. The present study was aimed to explore the hypothesis that the genetic polymorphisms of GST T1, M1 and P1 are associated with the severity of the mustard lung in the sulfur mustard-exposed individuals. Methods: Blood samples were taken from 185 sulfur mustard-exposed and 57 unexposed subjects. According to the stage of the mustard lung, sulfur mustard-exposed patients were categorized in the mild/moderate and severe/very severe groups. A multiplex PCR method was conducted to identify GSTM1 and GSTT1 null genotypes. To determine the polymorphisms of GSTP1 in exon 5 (Ile105Val) and exon 6 (Ala114Val), RFLP-PCR method was performed. Results: The frequency of GSTM1 homozygous deletion was significantly higher in the severe/very severe patients compared with the mild/moderate subjects (66.3% vs. 48%, Pâ
=â
0.013). The GSTM1 null genotype was associated with the severity of mustard lung (adjusted odds ratio [OR], 2.257; 95% CI, 1.219-4.180). There was no significant association between GSTT1 and GSTP1 polymorphisms with the severity of the mustard lung. Conclusion: The different distribution of GSTM1 null genotype in severe/very severe and mild/moderate groups indicated that the severity of the mustard lung might be associated with the genetic polymorphism(s)
Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia
Preeclampsia is a hypertensive disorder in pregnant women, which can be the leading cause of maternal and neonatal death or premature birth. Although the cause of preeclampsia is still not clear, local or systemic oxidative stress may explain the pathological features associated with this complication. However, it is not clear whether oxidative stress is the cause or the result of preeclampsia. For this purpose, the present meta-analysis was intended to evaluate the oxidant and antioxidant status in women with preeclampsia.Relevant studies were identified after a preliminary investigation of research articles published up to September 2017.In the overall analysis, including 2953 cases and 3621 controls, a statistically significant reduction in total antioxidant capacity, nitric oxide, superoxide dismutase, glutathione, vitamin E and C was observed in preeclampsia women. On the other hand, a statistically significant increase in malondialdehyde, protein carbonyl, total peroxide, glutathione peroxidase, catalase and uric acid were observed in preeclampsia women. The increased products of oxidative stress, which were found in the present meta-analysis might be an underlying mechanism for endothelial dysfunction in preeclampsia.This meta-analysis provides a scientific support that primary reduction of antioxidant capacity and increased levels of oxidative stress products may induce a condition in which the pathways responsible for blood pressure homeostasis are disrupted. In conclusion, it is hypothesized when oxidative stress is established, a protective response is induced by increasing some antioxidants. Further studies are warranted to investigate the role of dietary supplementation and genetic variation in women with different ethnicity. Keywords: Oxidative stress, Antioxidants, Preeclampsia, Meta-analysi
Investigating the Protective Role of N-Acetyl Cysteine and S-Methyl Cysteine in the Activity of Antioxidant Enzymes and the Level of lipid Peroxidation Due to Acetamiprid Administration in Rat Kidney and Serum
Background & Objective: Acetamiprid (ACP), as a neonicotinoid toxin, causes free radicals production and oxidative stress in various organisms. The aim of this study was to evaluate the antioxidative effects of N-acetylcysteine (NAC) and S-methylcysteine (SMC) on reducing acetaminoprid-induced oxidative stress in serum and kidney of rats.
Materials & Methods: In this experimental study, 42 male Wistar rats were randomly divided into 6 groups of 7 including one control, one sham (normal saline) and five experimental groups, which intra-peritoneally received ACP (5 mg/kg), NAG (160 mg/kg), SMC (100 mg/kg), ACP+NAC, ACP+SMC, and ACP+ NAC+SMC for one week. After separation of serum and kidney tissue, the activity of the catalase (CAT), glutathione S-transferase (GST), glutathione concentration (GSH), malondialdehyde (MDA) and total antioxidant (TAC) was determined.
Results: Acetamiprid caused significant increase in GST activity in serum and kidney (p< 0.01), CAT activity in serum and kidney (p< 0.05) but insignificant increase in MDA level and insignificant decrease in GSH and TAC compared to control. NAC and SMC, alone and in combination with ACP, restored the levels of TAC, GSH and MDA and activities of CAT and GST.
Conclusion: Acetamiprid increases lipid peroxidation, activity of CAT and GST, and decreases the concentration of GSH and TAC, presumably by producing free radicals. Administration of NAC and SMS as antioxidants causes a decrease in acetamiprid toxicity due to relative reduction of free radicals
Investigation of the Enzyme activities of Alkaline Phosphatase, Lactate Dehydrogenase, Transaminase and Histopathological Changes of Liver after Exposure to NiO and NiO Nanoparticles in Rats
Introduction: Nickel (Ni) and nickel compounds are widely used in industry, radiotherapy and nanomedicine. However, the toxicity of NiO nanoparticles is yet to be fully elucidated. In this study, we evaluated the toxicity of NiO and NiO nanoparticles (NiONPs) using basic medical diagnostic tools, such as biochemical tests and histopathological changes of liver in rats.
Methods: In this experimental study, 49 male rats were divided randomly into seven groups (n=7), including one control group and six experimental groups (three experimental groups received NiONPs and three experimental groups received NiO intraperitoneally) with doses of 10, 25 and 50 mg/kg for 8 days. After 8 days, blood samples were collected from heart and liver enzyme activity assay was performed on serum sample. Livert issue for histopathological evaluation were stained with hematoxylin and eosin. Data were analyzed using ANOVA and Tukey test with SPSS21 software at significant level of P<0.05.
Results:The results showed that enzyme activity of AST, ALT, ALP and LDH in different doses NiO NPs and NiO increased in compared to control group (p<0.05). Histopathological study of liver following intraperitoneal (IP) administration of NiONPs and NiO showed pathological changes, including congestion, Cirrhosis and inflammatory cell infiltration compared to control group.
Conclusion: The results of this study demonstrate that exposure to different doses of NiONPs and NiO can induce different degrees of damage in a dose dependent manner. Thus, increasing level of liver enzymes and histopathological changes confirmed NiONPs and NiO toxicity
Oral administration of encapsulated catechin in chitosanâalginate nanoparticles improves cognitive function and neurodegeneration in an aluminum chlorideâinduced rat model of Alzheimer's disease
Abstract The present study aimed to investigate the effect of catechinâloaded ChitosanâAlginate nanoparticles (NPs) on cognitive function in an aluminum chloride (AlCl3)âinduced rat model of Alzheimer's disease (AD). The Catechinâloaded ChitosanâAlginate nanocarriers were synthesized through ionotropic gelation (IG) method. Physioâchemical characterization was conducted with the Zetasizer Nano system, the scanning electron microscope, and the Fourier transform infrared spectroscopy. The experiments were performed over 21âdays on six groups of male Wistar rats. The control group, AlCl3 treated group, Catechin group, nanocarrier group, treatment group 1 (AlCl3â+âCatechin), and treatment group 2 (AlCl3â+ânanocarrier). A behavioral study was done by the Morris water maze (MWM) test. In addition, the level of oxidative indices and acetylcholine esterase (AChE) activity was determined by standard procedures at the end of the study. AlCl3 induced a significant increase in AChE activity, along with a significant decrease in the level of Catalase (CAT) and total antioxidant capacity (TAC) in the hippocampus. Moreover, the significant effect of AlCl3 was observed on the behavioral parameters of the MWM test. Both forms of Catechin markedly improved AChE activity, oxidative biomarkers, spatial memory, and learning. The present study indicated that the administration of Catechinâloaded ChitosanâAlginate NPs is a beneficial therapeutic option against behavioral and chemical alteration of AD in male Wistar rats
Development of a novel in vitro assay for the evaluation of integron DNA integrase activity
Integrons play an important role in multidrug resistance. The integron platform codes for integrase (intI) that is required for gene cassette integration through site-specific recombination. The recombination crossover occurs between the G and TT nucleotides in non-palindromic attI and palindromic attC sites. The aim of this study was to establish an efficient in vitro assay for integrase purification and activity detection. To this end, the intI gene was cloned into the pET-22b plasmid. Then, the resulting recombinant plasmid was transformed into Escherichia coli Origami⢠strain. The recombinant protein expression was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot assays. The recombinant intI protein was purified by nickelânitrilotriacetic acid (NiâNTA) affinity chromatography, and its activity was measured by a newly introduced assay. Briefly, specific primers for each side of attI and attC were used, thereby, a polymerase chain reaction would be performed, if a fused plasmid containing both attI and attC sites was created upon recombination. SDS-PAGE and western blotting confirmed the presence of a 38-kDa recombinant protein. Optimum conditions were established for the measurement of the integrase activity and a new model assay was conducted to analyse the recombination activity in vitro. Although the electrophoretic mobility shift assay is an efficient and reliable method, the newly introduced assay provided new or enhanced capability to determine the integrase activity, suggesting that there is no need for expensive and advanced equipment