28 research outputs found

    Efficient Key Exchange Using Identity-Based Encryption in Multipath TCP Environment

    No full text
    Across the globe, wireless devices with Internet facilities such as smartphones and tablets have become essential assets for communication and entertainment alike for everyday life for millions of people, which increases the network traffic and the demand for low-latency communication networks. The fourth-generation (4G)/long-term evolution (LTE)/ fifth-generation (5G) communication technology offers higher bandwidth and low latency services, but resource utilization and resiliency cannot be achieved, as transmission control protocol (TCP) is the most common choice for most of the state-of-art applications for the transport layer. An extension of TCP—multipath TCP (MPTCP)—offers higher bandwidth, resiliency, and stable connectivity by offering bandwidth aggregation and smooth handover among multiple paths. However, MPTCP uses multiple disjointed paths for communication to offer multiple benefits. A breach in the security of one of the paths may have a negative effect on the overall performance, fault-tolerance, robustness, and quality of service (QoS). In this paper, the research focuses on how MPTCP options such as MP_CAPABLE, ADD_ADDR, etc., can be used to exploit the vulnerabilities to launch various attacks such as session hijacking, traffic diversion, etc., to compromise the availability, confidentiality, and integrity of the data and network. The probable security solutions for securing MPTCP connections are analyzed, and the secure key exchange model for MPTCP (SKEXMTCP) based on identity-based encryption (IBE) is proposed and implemented. The parameters exchanged during the initial handshake are encrypted using IBE to prevent off-path attacks by removing the requirement for key exchange before communication establishment by allowing the use of arbitrary strings as a public key for encryption. The experiments were performed with IBE and an elliptic curve cryptosystem (ECC), which show that IBE performs better, as it does not need to generate keys while applying encryption. The experimental evaluation of SKEXMTCP in terms of security and performance is carried out and compared with existing solutions

    Machine Learning Algorithm for Shear Strength Prediction of Short Links for Steel Buildings

    No full text
    The rapid growth of using the short links in steel buildings due to their high shear strength and rotational capacity attracts the attention of structural engineers to investigate the performance of short links. However, insignificant attention has been oriented to efficiently developing a comprehensive model to forecast the shear strength of short links, which is expected to enhance the steel structures’ constructability. As machine learning algorithms was successfully used in various fields of structural engineering, the current study fills the gap in estimating the shear strength of short links using sophisticated machine learning algorithms. The deriving factors such as web and flange slenderness ratios, the flange-to-web area ratio, the forces in web and flange, and the link length ratio were investigated in this study, which is imperative to formulate an integrated prediction model. Consequently, the aim of this study utilizes advanced machine learning (ML) models (i.e., Extreme Gradient Boosting (XGBOOST), Light Gradient Boosting Machine (LightGBM), and Artificial Neural Network (ANN) to produce accurate forecasting for the shear strength. In this study, publicly available datasets were used for the training, testing, and validation. Different evaluation metrics were employed to evaluate the prediction’s performance of the used models, such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2). The prediction result displays that the XGBOOST and LightGBM provided better, and more reliable results compared to ANN and the AISC code. The XGBOOST and LightGBM models yielded higher values of R2, lower (RMSE), (MAE), and (MAPE) values and have shown to perform more accurate. Therefore, the overall outcomes showed that the LightGBM outperformed the XGBOOST model. Moreover, the overstrength ratio predicted by the LightGBM showed an excellent performance compared to the Gene Expression and Finite Element-based models. The developed models are vital for practitioners to predict the shear strength accurately, which pave the road towards wider application for automation in the steel buildings

    Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction

    No full text
    Accurate building construction cost prediction is critical, especially for sustainable projects (i.e., green buildings). Green building construction contracts are relatively new to the construction industry, where stakeholders have limited experience in contract cost estimation. Unlike conventional building construction, green buildings are designed to utilize new technologies to reduce their operations’ environmental and societal impacts. Consequently, green buildings’ construction bidding and awarding processes have become more complicated due to difficulties forecasting the initial construction costs and setting integrated selection criteria for the winning bidders. Thus, robust green building cost prediction modeling is essential to provide stakeholders with an initial construction cost benchmark to enhance decision-making. The current study presents machine learning-based algorithms, including extreme gradient boosting (XGBOOST), deep neural network (DNN), and random forest (RF), to predict green building costs. The proposed models are designed to consider the influence of soft and hard cost-related attributes. Evaluation metrics (i.e., MAE, MSE, MAPE, and R2) are applied to evaluate and compare the developed algorithms’ accuracy. XGBOOST provided the highest accuracy of 0.96 compared to 0.91 for the DNN, followed by RF with an accuracy of 0.87. The proposed machine learning models can be utilized as a decision support tool for construction project managers and practitioners to advance automation as a coherent field of research within the green construction industry

    Machine Learning-Based Model for Predicting the Shear Strength of Slender Reinforced Concrete Beams without Stirrups

    No full text
    The influence of concrete mix properties on the shear strength of slender structured concrete beams without stirrups (SRCB-WS) is a widespread point of contention. Over the past six decades, the shear strength of SRCB-WS has been studied extensively in both experimental and theoretical contexts. The most recent version of the ACI 318-19 building code requirements updated the shear strength equation for SRCB-WS by factoring in the macroeconomic factors and the contribution of the longitudinal steel structural ratio. However, the updated equation still does not consider the effect of the shear span ratio (a/d) and the yield stress of longitudinal steel rebars (Fy). Therefore, this study investigates the importance of the most significant potential variables on the shear strength of SRCB-WS to help develop a gene expression-based model to estimate the shear strength of SRCB-WS. A database of 784 specimens was used from the literature for training and testing the proposed gene expression algorithm for forecasting the shear strength of SRCB-WS. The collected datasets are comprehensive, wherein all considered concrete properties were considered over the previous 68 years. The performance of the suggested algorithm versus the ACI 318-19 equation was statistically evaluated using various measures, such as root mean square error, mean absolute error, mean absolute percentage error, and the coefficient of determination. The evaluation results revealed the superior performance of the proposed model over the current ACI 318-19 equation. In addition, the proposed model is more comprehensive and considers additional variables, including the effect of the shear span ratio and the yield stress of longitudinal steel rebars. The developed model reflects the power of employing gene expression algorithms to design reinforced concrete elements with high accuracy

    Machine Learning-Based Model for Predicting the Shear Strength of Slender Reinforced Concrete Beams without Stirrups

    No full text
    The influence of concrete mix properties on the shear strength of slender structured concrete beams without stirrups (SRCB-WS) is a widespread point of contention. Over the past six decades, the shear strength of SRCB-WS has been studied extensively in both experimental and theoretical contexts. The most recent version of the ACI 318-19 building code requirements updated the shear strength equation for SRCB-WS by factoring in the macroeconomic factors and the contribution of the longitudinal steel structural ratio. However, the updated equation still does not consider the effect of the shear span ratio (a/d) and the yield stress of longitudinal steel rebars (Fy). Therefore, this study investigates the importance of the most significant potential variables on the shear strength of SRCB-WS to help develop a gene expression-based model to estimate the shear strength of SRCB-WS. A database of 784 specimens was used from the literature for training and testing the proposed gene expression algorithm for forecasting the shear strength of SRCB-WS. The collected datasets are comprehensive, wherein all considered concrete properties were considered over the previous 68 years. The performance of the suggested algorithm versus the ACI 318-19 equation was statistically evaluated using various measures, such as root mean square error, mean absolute error, mean absolute percentage error, and the coefficient of determination. The evaluation results revealed the superior performance of the proposed model over the current ACI 318-19 equation. In addition, the proposed model is more comprehensive and considers additional variables, including the effect of the shear span ratio and the yield stress of longitudinal steel rebars. The developed model reflects the power of employing gene expression algorithms to design reinforced concrete elements with high accuracy

    Prediction Liquidated Damages via Ensemble Machine Learning Model: Towards Sustainable Highway Construction Projects

    No full text
    Highway construction projects are important for financial and social development in the United States. Such types of construction are usually accompanied by construction delay, causing liquidated damages (LDs) as a contractual provision are vital in construction agreements. Accurate quantification of LDs is essential for contract parties to avoid legal disputes and unfair provisions due to the lack of appropriate documentation. This paper effort sought to develop an ensemble machine learning technique (EMLT) that combines algorithms of the Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), k-Nearest Neighbor (kNN), Light Gradient Boosting Machine (LightGBM), Artificial Neural Network (ANN), and Decision Tree (DT) for the prediction of LDs in highway construction projects. Key attributes are identified and examined to predict the interrelated correlations among the influential features to develop accurate forecast models to assess the impact of each delay factor. Various machine-learning-based models were developed, where the different modeling outputs were analyzed and compared. Four performance matrices such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2) were used to assess and evaluate the accuracy of the implemented machine learning (ML) algorithms. The prediction outputs implied that the developed EMLT model has shown better performance compared to other ML-based models, where it has the highest accuracy of 0.997, compared to the DT, kNN, CatBoost, XGBoost, LightGBM, and ANN with an accuracy of 0.989, 0.988, 0.986, 0.975, 0.873, and 0.689, respectively. Thus, the findings of this research designate that the EMLT model can be used as an effective administrative decision adding tool for forecasting the LDs. As a result, this paper emphasizes ML鈥檚 potential to aid in the advancement of computerization as a comprehensible subject of investigation within highway building projects

    Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production鈥揅onsumption

    No full text
    In the current scenario, climatic adversities and a growing population are adding woes to the concerns of food safety and security. Furthermore, with the implementation of Sustainable Development Goal (SDG) 12 by the United Nations (UN), focusing on sustainable production鈥揷onsumption, climatic vulnerabilities need to be addressed. Hence, in order to map the sustainable production鈥揷onsumption avenues, agricultural practices need to be investigated for practices like Climate-Smart Agriculture (CSA). A need has arisen to align the existing agricultural practices in the developing nation towards the avenues of CSA, in order to counter the abrupt climatic changes. Addressing the same, a relation hierarchical model is developed which clusters the various governing criteria and their allied attributes dedicated towards the adoption of CSA practices. Furthermore, the developed model is contemplated for securing the primacies of promising practices for the enactment of CSA using the duo of the Analytical Hierarchical Process (AHP) and Fuzzy AHP (FAHP). The outcomes result in the substantial sequencing of the key attributes acting as a roadmap toward the CSA. This emphasizes the adoption of knowledge-based smart practices, which leaps from the current agricultural practices toward the CSA. Furthermore, by intensifying the utilization of the improved and resilient seed varieties and implying the fundamentals of agroforestry, we secure primacy to counter the adversities of the climate

    Breakthrough Curves Prediction of Selenite Adsorption on Chemically Modified Zeolite Using Boosted Decision Tree Algorithms for Water Treatment Applications

    No full text
    This work describes an experimental and machine learning approach for the prediction of selenite removal on chemically modified zeolite for water treatment. Breakthrough curves were constructed using iron-coated zeolite adsorbent and the adsorption behavior was evaluated as a function of an initial contaminant concentration as well as the ionic strength. An elevated selenium concentration in water threatens human health and aquatic life. The migration of this metalloid from the contaminated sites and the problems associated with its high releases into the water has become a major environmental concern. The mobility of this emerging metalloid in the contaminated water prompted the development of an efficient, cost-effective adsorbent for its removal. Selenite [Se(IV)] removal from aqueous solutions was studied in laboratory-scale continuous and packed-bed adsorption columns using iron-coated natural zeolite adsorbents. The proposed adsorbent combines iron oxide and natural zeolite’s ability to bind contaminants. Breakthrough curves were initially obtained under variable experimental conditions, including the change in the initial concentration of Se (IV), and the ionic strength of solutions. Investigating the effect of these parameters will enhance selenite mobility retardation in contaminated water. Continuous adsorption experiment findings will evaluate the efficiency of this economical and naturally-based adsorbent for selenite removal and fate in water. Multilinear and non-linear regressions approaches were utilized, yet low coefficients of determination values were respectively obtained. Then, a comparative analysis of five boosted regression tree algorithms for a selenite breakthrough curve prediction was performed. AdaBoost, Gradient boosting, XGBoost, LightGBM, and CatBoost models were analyzed using the experimental data of the packed-bed columns. The performance of these models for the breakthrough curve prediction under different operation conditions, such as initial selenite concentration and ionic strength, was discussed. The applicability of these models was evaluated using performance metrics (i.e., Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2). The CatBoost model provided the best fit for a breakthrough prediction with a coefficient of determination R2 equal to 99.57. The k-fold cross-validation technique and the statistical metrics verify this model’s accurateness. A feature importance assessment indicated that Se (IV) initial concentration was the most influential experimental variable, while the ionic strength had the least effect. This finding was consistent with the column transport results, which observed Se (IV) sorption dependency on its inlet concentration; simultaneously, the ionic strength effect was negligible. This work proposes implementing machine learning-based approaches for predicting water remediation-associated processes. The significance of this work was to provide an alternative method for investigating selenite adsorption behavior and predicting the breakthrough curves using a machine-based approach. This work also highlighted the importance of management practices of adsorption processes involved in water remediation

    Analysis of thermal decomposition kinetics of chicken feather fiber reinforced Poly-lactic acid composites filament

    No full text
    Derivative Thermogravimetric analysis under air was used to observe the thermal decomposition process of Chicken feather fiber (CFF) reinforced Poly-lactic acid (PLA) composite filament of 2.2聽mm diameter. The thermal degradation of the sample was initiated at 140 织C. Approximately 75聽% of the thermal degradation occurred between the temperature of 357 织C and 399 织C. The composite's activation energy was established using the Coats-Redfern method. The results showed that the activation energy of 112.06聽kJ/mol is utilized for the sample throughout the temperature range of 23 织C to 398 织C. A low activation energy is indicative of rapid chemical reactions between the CFF and PLA molecules. The results from TGA and DTGA indicate that the addition of CFF in the PLA matrix enhanced the thermal stability

    Novel Exploit Feature-Map-Based Detection of Adversarial Attacks

    No full text
    In machine learning (ML), adversarial attack (targeted or untargeted) in the presence of noise disturbs the model prediction. This research suggests that adversarial perturbations on pictures lead to noise in the features constructed by any networks. As a result, adversarial assaults against image categorization systems may present obstacles and possibilities for studying convolutional neural networks (CNNs). According to this research, adversarial perturbations on pictures cause noise in the features created by neural networks. Motivated by adversarial perturbation on image pixel attacks observation, we developed a novel exploit feature map that describes adversarial attacks by performing individual object feature-map visual description. Specifically, a novel detection algorithm calculates each object’s class activation map weight and makes a combined activation map. When checked with different networks like VGGNet19 and ResNet50, in both white-box and black-box attack situations, the unique exploit feature-map significantly improves the state-of-the-art in adversarial resilience. Further, it will clearly exploit attacks on ImageNet under various algorithms like Fast Gradient Sign Method (FGSM), DeepFool, Projected Gradient Descent (PGD), and Backward Pass Differentiable Approximation (BPDA)
    corecore