180 research outputs found
MicroRNA and metabolomics signatures for adrenomyeloneuropathy disease severity
Adrenomyeloneuropathy (AMN), the slow progressive phenotype of adrenoleukodystrophy (ALD), has no clinical plasma biomarker for disease progression. This feasibility study aimed to determine whether metabolomics and micro-RNA in blood plasma provide a potential source of biomarkers for AMN disease severity. Metabolomics and RNA-seq were performed on AMN and healthy human blood plasma. Biomarker discovery and pathway analyses were performed using clustering, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and regression against patient\u27s clinical Expanded Disability Status Score (EDSS). Fourteen AMN and six healthy control samples were analyzed. AMN showed strong disease-severity-specific metabolic and miRNA clustering signatures. Strong, significant clinical correlations were shown for 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) (r (2) = 0.83, p \u3c 0.00001), dehydroepiandrosterone sulfate (DHEA-S; r (2) = 0.82, p \u3c 0.00001), hypoxanthine (r (2) = 0.82, p \u3c 0.00001), as well as miRNA-432-5p (r (2) = 0.68, p \u3c 0.00001). KEGG pathway comparison of mild versus severe disease identified affected downstream systems: GAREM, IGF-1, CALCRL, SMAD2&3, glutathione peroxidase, LDH, and NOS. This feasibility study demonstrates that miRNA and metabolomics are a source of potential plasma biomarkers for disease severity in AMN, providing both a disease signature and individual markers with strong clinical correlations. Network analyses of affected systems implicate differentially altered vascular, inflammatory, and oxidative stress pathways, suggesting disease-severity-specific mechanisms as a function of disease severity
DNM1 encephalopathy: A new disease of vesicle fission.
ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention
Remote work transition amidst COVID-19 : impacts on presenteeism, absenteeism, and worker well-being — a scoping review
Background: The COVID-19 pandemic has accelerated the transition to remote work, leading to increased attention on presenteeism and absenteeism among remote workers. Understanding the implications of these phenomena on worker health and productivity is crucial for optimizing remote work arrangements and developing policies to improve employee well-being.Objectives: This scoping review aims to examine the occurrence of presenteeism and absenteeism
among remote workers during the COVID-19 pandemic and the interrelated physical and mental health issues during these periods.Methods: PsycINFO, Medline, Embase, CINAHL, Eric, Business Source Premier, SCOPUS, and sociological abstracts were searched resulting in 1792 articles. Articles were included if the population of interest was 18+ (i.e., working age), engaged in full or part-time work, and the employees shifted from in-person to remote work due to the COVID-19 pandemic. All study designs, geographical areas, and papers written post-onset of the COVID-19 pandemic were included; however, systematic reviews were excluded. Data was charted into Microsoft Excel by 2 independent reviewers.Results: The literature search identified 10 studies (i.e., seven cross-sectional studies, two qualitative studies, and one observational study). Five major overarching themes were identified specifically (1) telework and mental health (2) telework and physical health (3) worker benefits (4) gender dynamics and (5) difficulty navigating the teleworking environment. While remote work offers flexibility in terms of saved commute time and flexible work schedules, it also exacerbates challenges related to presenteeism, absenteeism, and work-life balance. These challenges include experiencing psychological distress, depression, anxiety, stress,
sleep deprivation, musculoskeletal pain, difficulties concentrating at work for both women and working parents, struggles disconnecting after hours, and the inability to delineate between the work and home environment.Discussion: The findings suggest that remote work during the COVID-19 pandemic has both positive
and negative implications for worker well-being and productivity. However, future research needs to incorporate the potential effects of telework frequency (full time vs. part time) on employee productivity and its role on presenteeism and absenteeism, to gain a more comprehensive understanding on remote work difficulties. Addressing these challenges requires proactive interventions and support mechanisms to promote worker health and productivity in remote settings.peer-reviewe
Observation of the nonlinear Hall effect under time reversal symmetric conditions
The electrical Hall effect is the production of a transverse voltage under an
out-of-plane magnetic field. Historically, studies of the Hall effect have led
to major breakthroughs including the discoveries of Berry curvature and the
topological Chern invariants. In magnets, the internal magnetization allows
Hall conductivity in the absence of external magnetic field. This anomalous
Hall effect (AHE) has become an important tool to study quantum magnets. In
nonmagnetic materials without external magnetic fields, the electrical Hall
effect is rarely explored because of the constraint by time-reversal symmetry.
However, strictly speaking, only the Hall effect in the linear response regime,
i.e., the Hall voltage linearly proportional to the external electric field,
identically vanishes due to time-reversal symmetry. The Hall effect in the
nonlinear response regime, on the other hand, may not be subject to such
symmetry constraints. Here, we report the observation of the nonlinear Hall
effect (NLHE) in the electrical transport of the nonmagnetic 2D quantum
material, bilayer WTe2. Specifically, flowing an electrical current in bilayer
WTe2 leads to a nonlinear Hall voltage in the absence of magnetic field. The
NLHE exhibits unusual properties sharply distinct from the AHE in metals: The
NLHE shows a quadratic I-V characteristic; It strongly dominates the nonlinear
longitudinal response, leading to a Hall angle of about 90 degree. We further
show that the NLHE directly measures the "dipole moment" of the Berry
curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2.
Our results demonstrate a new Hall effect and provide a powerful methodology to
detect Berry curvature in a wide range of nonmagnetic quantum materials in an
energy-resolved way
Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies
Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype
Recommended from our members
Landscapes of cellular phenotypic diversity in breast cancer xenografts and their impact on drug response
Funder: Cancer Research UK (CRUK); doi: https://doi.org/10.13039/501100000289Funder: AstraZeneca; doi: https://doi.org/10.13039/100004325Abstract: The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
- …