4 research outputs found
Exploiting Semantic Annotations and Q-Learning for Constructing an Efficient Hierarchy/Graph Texts Organization
Tremendous growth in the number of textual documents has produced daily requirements for effective development to explore, analyze, and discover knowledge from these textual documents. Conventional text mining and managing systems mainly use the presence or absence of key words to discover and analyze useful information from textual documents. However, simple word counts and frequency distributions of term appearances do not capture the meaning behind the words, which results in limiting the ability to mine the texts. This paper proposes an efficient methodology for constructing hierarchy/graph-based texts organization and representation scheme based on semantic annotation and Q-learning. This methodology is based on semantic notions to represent the text in documents, to infer unknown dependencies and relationships among concepts in a text, to measure the relatedness between text documents, and to apply mining processes using the representation and the relatedness measure. The representation scheme reflects the existing relationships among concepts and facilitates accurate relatedness measurements that result in a better mining performance. An extensive experimental evaluation is conducted on real datasets from various domains, indicating the importance of the proposed approach
Resistance Induction and Direct Antifungal Activity of Some Monoterpenes against Rhizoctonia solani, the Causal of Root Rot in Common Bean
This study was conducted to evaluate eco-friendly control agents (carvone, cuminaldehyde, and linalool) against Rhizoctonia solani, which causes root rot disease either by induction of defense response or direct antifungal activity. The induction of resistance was examined by detecting the transcription of defense genes and the effect of the tested control agents on the growth and the yield of common bean plants. The growth of R. solani was significantly inhibited after treatment with the tested compounds compared to the untreated control under laboratory conditions. The disease severity of root rot was decreased in common bean plants treated with the tested compounds compared to untreated control plants under greenhouse conditions. Common bean plants treated with the tested control agents expressed defense genes (Phenylalanine ammonia lyase and β-1,3-Glucanase) involved in jasmonic acid (JA) and salicylic acid (SA) signaling pathways with 2–5 fold higher than the control. Treatment of common beans with the tested control agents and fungicide significantly improved the growth and yield characteristics of common bean. Therefore, the use of monoterpenes could be a novel strategy to control this pathogen and consider the first report