2 research outputs found

    Evaluation of Complications after Surgical Treatment of Thoracic Outlet Syndrome

    No full text
    Background: Surgical treatment of thoracic outlet syndrome (TOS) is necessary when non-surgical treatments fail. Complications of surgical procedures vary from short-term post-surgical pain to permanent disability. The outcome of TOS surgery is affected by the visibility during the operation. In this study, we have compared the complications arising during the supraclavicular and the transaxillary approaches to determine the appropriate approach for TOS surgery. Methods: In this study, 448 patients with symptoms of TOS were assessed. The male-to-female ratio was approximately 1:4, and the mean age was 34.5 years. Overall, 102 operations were performed, including unilateral, bilateral, and reoperations, and the patients were retrospectively evaluated. Of the 102 patients, 63 underwent the supraclavicular approach, 32 underwent the transaxillary approach, and 7 underwent the transaxillary approach followed by the supraclavicular approach. Complications were evaluated over 24 months. Results: The prevalence of pneumothorax, hemothorax, and vessel injuries in the transaxillary and the supraclavicular approaches was equal. We found more permanent and transient brachial plexus injuries in the case of the transaxillary approach than in the case of the supraclavicular approach, but the difference was not statistically significant. Persistent pain and symptoms were significantly more common in patients who underwent the transaxillary approach (p<0.05). Conclusion: The supraclavicular approach seems to be the more effective technique of the two because it offers the surgeon better access to the brachial plexus and a direct view. This approach for a TOS operation offers a better surgical outcome and lower reoperation rates than the transaxillary method. Our results showed the supraclavicular approach to be the preferred method for TOS operations

    Blood-brain barrier disruption defines the extracellular metabolome of live human high-grade gliomas

    No full text
    Abstract The extracellular microenvironment modulates glioma behaviour. It remains unknown if blood-brain barrier disruption merely reflects or functionally supports glioma aggressiveness. We utilised intra-operative microdialysis to sample the extracellular metabolome of radiographically diverse regions of gliomas and evaluated the global extracellular metabolome via ultra-performance liquid chromatography tandem mass spectrometry. Among 162 named metabolites, guanidinoacetate (GAA) was 126.32x higher in enhancing tumour than in adjacent brain. 48 additional metabolites were 2.05–10.18x more abundant in enhancing tumour than brain. With exception of GAA, and 2-hydroxyglutarate in IDH-mutant gliomas, differences between non-enhancing tumour and brain microdialysate were modest and less consistent. The enhancing, but not the non-enhancing glioma metabolome, was significantly enriched for plasma-associated metabolites largely comprising amino acids and carnitines. Our findings suggest that metabolite diffusion through a disrupted blood-brain barrier may largely define the enhancing extracellular glioma metabolome. Future studies will determine how the altered extracellular metabolome impacts glioma behaviour
    corecore