22 research outputs found
Bioinformatics Evaluation of Plant Chlorophyllase, the Key Enzyme in Chlorophyll Degradation
Background and Objective: Chlorophyllase catalyzes the hydrolysis of chlorophylls to chlorophyllide and phytol. Recently, several applications including removal of chlorophylls from vegetable oils, use in laundry detergents and production of chlorophyllides have been described for chlorophyllase. However, there is little information about the biochemical characteristics of chlorophyllases.Material and Methods: 35 chlorophyllase protein sequences were obtained from the National Centre for Biotechnology Information database. All of the sequences were analyzed using bioinformatics tools for their conserved domain, phylogenetic relationships and biochemical characteristics.Results and Conclusion: The overall domain architecture of chlorophyllases consisted of the esterases/lipases superfamily domain over their full length and the alpha/beta hydrolase family domain over the middle part of their sequences. Plant chlorophyllases could be classified into 4 clades. Molecular weight and pI of the chlorophyllases ranged 32.65-37.77 kDa and 4.80-8.97, respectively. The most stable chlorophyllase is probably obtained from Malus domestica. Chlorophyllases form Solanum pennellii, Triticum aestivum, Triticum urartu, Arabidopsis lyrata, Pachira macrocarpa, Prunus mume and Malus domestica were predicted to be soluble upon overexpression in Escherichia coli, Beta vulgaris and Chenopodium album chlorophyllases were predicted to form no disulfide bond. Chlorophyllases from Jatropha curcas, Amborella trichopod, Setaria italica, Piper betle, Triticum urartu and Arabidopsis thaliana were predicted to be in non-N-glycosylated form.Conflict of interest: The authors declare no conflict of interest
Essential oil composition of sweet basil (Ocimum basilicum L.) in symbiotic relationship with Piriformospora indica and paclobutrazol application under salt stress
Essential oil content and oil composition of paclobutrazol treated sweet basil (Ocimum basilicum L.) plant inoculated with Piriformospora indica under salt stress were investigated by GC-MS. The results show a slight increase in essential oil content when basil plants subjected to moderate salinity stress (3 dS m−1 of NaCl). It decreased signifiicantly with increasing salinity level to 9 dS m−1. The findings revealed that leaf area, above ground and leaf dry weights, essential oil content and yield were significantly affected by P. indica inoculation, however paclobutrazol application significantly influenced essential oil yield but not content. Fungal symbiosis as well as paclobutrazol application ameliorated the negative effects of salinity on dry matter and essential oil yield. The main constituents found in the volatile oil of O. basilicum in control treatment were Geranial (26.03%), Neral (24.88%) and Estragole (24.78%). The compounds concentrations showed some differences in P. indica and paclobutrazol treatments. The results demonstrate that micorrhiza-like fungi concomitantly increase essential oil production and biomass in sweet basil, a medicinal herb rich in commercially valuable essential oils
Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis
Macrophages specialize in removing lipids and debris present in the atherosclerotic plaque. However, plaque progression renders macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. Here we show that a decline in the autophagy-lysosome system contributes to this as evidenced by a derangement in key autophagy markers in both mouse and human atherosclerotic plaques. By augmenting macrophage TFEB, the master transcriptional regulator of autophagy-lysosomal biogenesis, we can reverse the autophagy dysfunction of plaques, enhance aggrephagy of p62-enriched protein aggregates and blunt macrophage apoptosis and pro-inflammatory IL-1β levels, leading to reduced atherosclerosis. In order to harness this degradative response therapeutically, we also describe a natural sugar called trehalose as an inducer of macrophage autophagy-lysosomal biogenesis and show trehalose's ability to recapitulate the atheroprotective properties of macrophage TFEB overexpression. Our data support this practical method of enhancing the degradative capacity of macrophages as a therapy for atherosclerotic vascular disease
On the Internal Enrichment Implementation for Non-Convex Paths, Discontinuities and Crack Problems
Studies on the cracked plates have shown high variations in the stress values around the crack tip. On the other hand, micro-cracks are observed in man-made pieces. Thus, analysis of stress fields as well as displacement at the crack tip will be inevitable and very important. Mesh-free methods are new techniques that do not require applying the communication-based concept on what is presented in the finite element method. The discretization of the problem domain is done by a set of node points. In the present study, the Element-Free Galerkin (EFG) method was used to analyze the problems of linear elastic stress field in cracked bodies. Two important and essential measures (steps) were done for increasing the accuracy of the results obtained from the analysis of the problems. In the first step, the standard moving least squares shape function was enriched for capturing discontinuity, using some extra basis functions obtained from analytical solutions. In the next step, some consideration was applied in the case of confronting non-convex paths and discontinuities. For this purpose, the diffraction method was used to generate suitable shape functions. Finally, the accuracy of the results and proper efficiency of the proposed extended EFG method were assessed by the standard problem analysis and the results of numerical analysis were compared with the theoretical results
Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of Cucurbitacin E and on antibacterial property of Cucumis sativus
Abstract Background Cucurbitacins are mostly found in the members of the family Cucurbitaceae and are responsible for the bitter taste of cucumber. Pharmacological activities such as anti-bacterial and anti-tumor effects have been attributed to these structurally divers triterpens. The aim of this study was to investigate the effect of potassium phosphite (KPhi) and chitosan on Cucurbitacin E (CuE) concentration in different tissues of Cucumis sativus. The antibacterial effect of plant ethanolic extracts was also examined against E.coli PTCC 1399 and Pseudomonas aeruginosa PTCC 1430 bacterial strains. Methods After emergence of secondary leaves, cucumber plants were divided into 4 groups (each group consisted of 6 pots and each pot contained one plant) and different treatments performed as follows: group1. Leaves were sprayed with distilled water (Control), group 2. The leaves were solely treated with potassium phosphite (KPhi), group 3. Leaves were solely sprayed with chitosan (Chitosan), group 4. Leaves were treated with KPhi and chitosan (KPhi + chitosan). The KPhi (2 g L−1) and chitosan (0.2 g L−1) were applied twice every 12 h for one day. Fruits, roots and leaves were harvested 24 h later. The ethanolic extract of plant organs was used for determination of CuE concentration using HPLC approach. The antimicrobial activity was evaluated by the agar well diffusion method. The experiments were arranged in a completely randomized design (CRD) and performed in six biological replications for each treatment. Analysis of variance was performed by one-way ANOVA and Dunnette multiple comparison using SPSS. Results The highest level of CuE was recorded in fruit (2.2 g L−1) of plants under concomitant applications of KPhi and chitosan. Result of antibacterial activity evaluation showed that under concomitant treatments of KPhi and chitosan, fruit extract exhibited the highest potential for activity against E. coli PTCC 1399 (with mean zone of inhibition equal to 36 mm) and Pseudomonas aeruginosa PTCC 1430 (with mean zone of inhibition equal to 33 mm). Conclusions KPhi and chitosan can induce production of CuE compound and increase antibacterial potential of cucumber plant extract. The application of KPhi and chitosan may be considered as promising prospect in the biotechnological production of CuE
On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods
Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress
Effect of Rice Husk Ash on Mechanical Properties, Fracture Energy, Brittleness and Aging of Calcium Aluminate Cement Concrete
The calcium aluminate cement (CAC) is considered as eco-cement due to the reduced carbon emission during its production; it has various applications due to its high early age strength and enhanced durability in harsh environments. However, the initial hydration products of CAC concrete are temperature dependent and meta stable that will gradually convert to more stable phases. Such transition from an initial product that are dense and strong to more stable phases that are weaker and more porous, causes a reduction in strength and durability over time. This article discusses the results of a comprehensive study on incorporating rice husk ash (RHA) in CAC concrete in order to limit the phase transition of CAC hydration product and stabilize its long-term properties. Various concrete mixtures with different contents of RHA (0, 2.5, 5, 7.5, and 10%) as a cement replacement material were examined. In addition to the workability properties of the fresh concrete, the microstructural and mechanical properties of hardened concrete are characterized at the ages of 7, 28 and 90 days. The findings indicate that, at 90 days, the mechanical strengths of the mixes containing RHA were higher than those of the control mix, with the maximum improvement occurring at the substitution percentage of 5%. In accordance with TGA analysis the substitution of 5% RHA in CAC concrete led to a higher hydration level, which in turn improved the mechanical properties relative to the specimen without RHA at 90 days
New insights into azelaic acid-induced resistance against Alternaria Solani in tomato plants
Abstract Background The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. Results The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. Conclusion The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application