752 research outputs found
The inapproximability for the (0,1)-additive number
An
{\it additive labeling} of a graph is a function , such that for every two adjacent vertices and of , ( means that is joined to ). The {\it additive number} of ,
denoted by , is the minimum number such that has a additive
labeling . The {\it additive
choosability} of a graph , denoted by , is the smallest
number such that has an additive labeling for any assignment of lists
of size to the vertices of , such that the label of each vertex belongs
to its own list.
Seamone (2012) \cite{a80} conjectured that for every graph , . We give a negative answer to this conjecture and we show that
for every there is a graph such that .
A {\it -additive labeling} of a graph is a function , such that for every two adjacent vertices and
of , .
A graph may lack any -additive labeling. We show that it is -complete to decide whether a -additive labeling exists for
some families of graphs such as perfect graphs and planar triangle-free graphs.
For a graph with some -additive labelings, the -additive
number of is defined as where is the set of -additive labelings of .
We prove that given a planar graph that admits a -additive labeling, for
all , approximating the -additive number within is -hard.Comment: 14 pages, 3 figures, Discrete Mathematics & Theoretical Computer
Scienc
-SAT problem and its applications in dominating set problems
The satisfiability problem is known to be -complete in general
and for many restricted cases. One way to restrict instances of -SAT is to
limit the number of times a variable can be occurred. It was shown that for an
instance of 4-SAT with the property that every variable appears in exactly 4
clauses (2 times negated and 2 times not negated), determining whether there is
an assignment for variables such that every clause contains exactly two true
variables and two false variables is -complete. In this work, we
show that deciding the satisfiability of 3-SAT with the property that every
variable appears in exactly four clauses (two times negated and two times not
negated), and each clause contains at least two distinct variables is -complete. We call this problem -SAT. For an -regular
graph with , it was asked in [Discrete Appl. Math.,
160(15):2142--2146, 2012] to determine whether for a given independent set
there is an independent dominating set that dominates such that ? As an application of -SAT problem we show that
for every , this problem is -complete. Among other
results, we study the relationship between 1-perfect codes and the incidence
coloring of graphs and as another application of our complexity results, we
prove that for a given cubic graph deciding whether is 4-incidence
colorable is -complete
Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number
A 2-hued coloring of a graph (also known as conditional -coloring
and dynamic coloring) is a coloring such that for every vertex of
degree at least , the neighbors of receive at least colors. The
smallest integer such that has a 2-hued coloring with colors, is
called the {\it 2-hued chromatic number} of and denoted by . In
this paper, we will show that if is a regular graph, then and if is a graph and
, then and in general case if is a graph, then .Comment: Dynamic chromatic number; conditional (k, 2)-coloring; 2-hued
chromatic number; 2-hued coloring; Independence number; Probabilistic metho
From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes
Cages, defined as regular graphs with minimum number of nodes for a given
girth, are well-studied in graph theory. Trapping sets are graphical structures
responsible for error floor of low-density parity-check (LDPC) codes, and are
well investigated in coding theory. In this paper, we make connections between
cages and trapping sets. In particular, starting from a cage (or a modified
cage), we construct a trapping set in multiple steps. Based on the connection
between cages and trapping sets, we then use the available results in graph
theory on cages and derive tight upper bounds on the size of the smallest
trapping sets for variable-regular LDPC codes with a given variable degree and
girth. The derived upper bounds in many cases meet the best known lower bounds
and thus provide the actual size of the smallest trapping sets. Considering
that non-zero codewords are a special case of trapping sets, we also derive
tight upper bounds on the minimum weight of such codewords, i.e., the minimum
distance, of variable-regular LDPC codes as a function of variable degree and
girth
- β¦