3 research outputs found

    Advancements in Liquid Desiccant Technologies: A Comprehensive Review of Materials, Systems, and Applications

    No full text
    Desiccant agents (DAs) have drawn much interest from researchers and businesses because they offer a potential method for lowering environmental impact, increasing energy efficiency, and controlling humidity. As a result, they provide a greener option to conventional air conditioning systems. This review thoroughly analyzes current issues, obstacles, and future advancements in liquid desiccant agents (LDAs) for drying, air conditioning, and dehumidification applications. The importance of LDAs in lowering energy use and greenhouse gas emissions is highlighted, emphasizing their potential for environmentally friendly humidity control. The current review examines key parameters such as novel materials, enhancing desiccant qualities, integration with technologies, and long-term durability while examining recent developments in LDAs and investigating their applications in diverse industries. The main conclusions from the evaluated publications in this review are also highlighted, including developments in LDAs, new applications, and developing research fields. Overall, this review advances knowledge of LDAs and their potential to shift humidity control systems toward sustainability and energy efficiency

    Recent progress in performance improvement strategies for quantum dot sensitization methods: Challenges, achievements, and future prospects

    No full text
    In the recent past, there has been an increase in the use of semiconductor nanostructures that convert solar energy to electrical energy. This has encouraged the development of better and more efficient solar cells (SCs). Numerous investigations have been conducted into synthesizing novel semiconductor materials and tuning the electronic properties based on the shape, size, composition, and assembly of the quantum dots to improve hybrid assemblies. Recent studies that are determining the prospects of quantum dot SCs can form the basis for improving photovoltaic efficiency. Here, we have reviewed studies that investigated the sensitization methods for fabricating highly efficient SCs. We also discussed some examples that would help other researchers who want to sensitize quantum dot (QD) SCs. Thereafter, we analyzed the main and popular strategies that can be used for sensitizing the QD SCs within the limitations, advantages, and prospects of fabricating high-efficiency and stable QDs. During this work, we offered strong technical support and a theoretical basis for improving the industrial applications of QD. In addition, we provide a reference that can inspire other researchers who aim to improve the performance of SCs
    corecore