3 research outputs found
Effects of gentaminoseleferon on blood parameters during treatment of Mycoplasma dispar respiratory infection in calves
Background and Aim: Respiratory diseases in young cattle are among the significant cattle pathologies that cause considerable economic damage globally. For the treatment of respiratory diseases, coformulated drugs that increase general nonspecific resistance, exhibit adaptogenic and anti-inflammatory properties, and normalize metabolic processes in animals are currently being used. The aim of our study was to investigate the therapeutic efficacy of the complex drug “gentaminoseleferon”, used in the treatment of respiratory diseases in calves, especially in Mycoplasma dispar infection. Materials and Methods: The animals were divided into three groups. Calves with the first clinical signs of respiratory pathology were randomly divided into two groups. The first experimental group (n=5) was intramuscularly injected with sulfetrisan at a dose of 5-10 mL/animal once per day for 7 days. The second experimental group (n=5) was given gentaminoseleferon at a dose of 1 mL/10 kg of body weight once per day for 7 days. The drugs were not used in the control group, the “healthy animals (n=5)”. Blood samples were taken 10 days before and after treatment and compared between the experimental and healthy calves. The changes in the hematological and biochemical parameters of blood and serum were evaluated. Results: During the recovery process of animals in the experimental groups, a normalization of the hematological and biochemical parameters of blood and serum was noted. Interestingly, in calves of the second experimental group, an increase in the total serum protein content by 2.2% (p<0.05) was recorded in comparison with the first group. The second group, furthermore, showed an increase in Vitamins A, E, and C concentrations by 13.5% (p<0.05), 11.9% (p<0.005), and 15.1% (p<0.0005), respectively, as well as in zinc and iron concentrations by 4.1% (p<0.05) and 9.3% (p<0.0001), respectively. These findings indicate a more pronounced decrease in the inflammatory process in the respiratory system and intensive restoration of metabolism, thereby establishing the high therapeutic efficacy of gentaminoseleferon. Conclusion: Gentaminoseleferon was proven highly effective in the treatment of calves with respiratory illnesses and in restoring homeostasis in the organisms of animals after treatment, as indicated by the normalization of morphological and biochemical blood parameters with a reduction in the recovery time. Copyright: Abed Alhussen, et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Parameters of nonspecific resistance of calves with respiratory pathology before and after treatment
Objective: The research was conducted to study the effect of a complex antimicrobial drug with an anti-inflammatory effect and an antimicrobial drug with an immunostimulating effect on the parameters of nonspecific resistance in calves. Materials and Methods: Two groups (n = 5 each) of sick calves with respiratory pathology were selected for this study. For the treatment of the first experimental group, a complex antimicrobial drug Sulfetrisan® was used. The second experimental group of the calves was intramuscularly injected with the experimental drug gentaaminoseleferon (GIA). To assess the cellular component of immunity in the blood before and after treatment, the number of white blood cells, T-lymphocytes, B-lymphocytes, phagocytic activity of leukocytes, phagocytic number, and phagocytic index (PhI) were determined. In addition, for assessing the humoral component, serum complement activity (SCA), serum lysozyme activity, serum bactericidal activity (SBA), circulating immune complexes (CIC), and total immunoglobulins (total Ig) were measured. The results were compared with the baseline parameters of healthy calves of the control group. Results: When studying the parameters of the humoral and cellular components of nonspecific resistance, it was found that in sick animals, compared with healthy ones, respiratory pathology was accompanied by an imbalance in the immune system. In the process of recovery in animals of the experimental groups under the effect of the drugs, positive changes occurred. However, many of the studied parameters did not reach the values of healthy animals. In the group of calves that received GIA, compared with the calves given Sulfetrisan®, a significant increase in PhI (p < 0.05), SBA (p < 0.006), SCA (p < 0.05), total Ig (p < 0.0005), and CIC (p < 0.05) was observed, which indicated an increase in natural resistance due to the immunostimulating action. Conclusion: The use of GIA in sick animals added to an increase in the general nonspecific cellular and humoral resistance of calves, which made it possible to increase therapeutic efficacy and shorten their recovery time © 2021. The authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0
Mycoplasma bovis, M. bovigenitalium and M. dispar as bovine pathogens: Brief characteristics of the pathogens [ПАТОГЕННЫЕ МИКОПЛАЗМЫ КРУПНОГО РОГАТОГО СКОТА Mycoplasma bovis, M. bovigenitalium И M. dispar: КРАТКАЯ ХАРАКТЕРИСТИКА ВОЗБУДИТЕЛЕЙ]
The cattle mycoplasmas are widespread throughout the world (A.M. Parker et al., 2018; M. Abed Alhussen et al., 2020). This review presents data on the epidemiology and diagnosis of mycoplasmosis in cattle caused by M. bovis, M. bovigenitalium, and M. dispar. Mycoplasmas can cause economically important diseases in cattle, including mastitis, arthritis, keratoconjunctivitis, otitis media, pneumonia, and reproductive disorders (R.A.J. Nicholas et al., 2008; F.P. Maunsell et al., 2011). Mycoplasmas are characterized by a size of up to 150 μm, small genome (0.58-1.38 million base pairs) a low G-C composition (23-40 %) and the absence of a cell wall which determines their polymorphism and resistance to antibiotics, influencing the synthesis of the bacterial cell wall (R.A.J. Nicholas et al., 2008; P. Vos et al., 2011). Mycoplasma surface antigens are highly variable both in vitro and in vivo, which leads to significant variability of isolates (M.A. Rasheed et al., 2017). They also play an important role in overcoming the host's immune system. In addition, some of these antigens are involved in the adhesion of mycoplasmas to host cells (Y. Guo et al., 2017). After adhesion, many mycoplasmas produce a variety of products that damage host cells and enhance pathogenesis (L.A. Khan et al., 2005). They can also form biofilms that increase resistance to drying out and heat stress (L. McAuliffe et al., 2006; F. Gomes et al., 2016). Moreover, the invasion and intracellular survival of mycoplasmas in cattle cells contributes to the preservation and spread in the host organism (J. Van der Merwe et al., 2010). The incubation period for mycoplasma infection in cattle depends on many factors, i.e., the infectious dose, the presence of associated infections, the conditions of keeping the animals in the herd and the stress state of the animals (M.J. Calcutt et al., 2018). Sick animals are a source of infection, because they can shed the pathogen with nasal discharge and sperm for several months and sometimes for several years (K.A. Clothier et al., 2010; V. Punyapornwithaya et al., 2010). It should be noted that at low temperatures, mycoplasmas remain viable for a long time: in deeply frozen cattle semen, the pathogen can remain infectious for many years (A. Kumar et al., 2011). The high contagiousness of some species of Mycoplasma spp., their low sensitivity to treatment and the associated consequences of culling for the affected population make timely and accurate diagnosis important for disease control and prevention (A.M. Parker et al., 2018). The cultural methods can be applied for isolation and identification of the pathogen. However, these methods have limitations. Cultivation of mycoplasmas requires a complex medium, special equipment and technical skills (R.A.J. Nicholas et al., 2008; M.J. Calcutt et al., 2018; A.M. Andersson et al., 2019). Mycoplasmas require 7-10-day cultivation at a temperature of 37 °С and 5-10 % CO2. The colony has the “Fried-egg” appearance characteristic of most mycoplasmas (P.J. Quinn et al., 2011). By contrast, PCR provides a rapid and accurate diagnosis of the disease by detecting mycoplasmal DNA (A.M. Andersson et al., 2019). Furthermore, many other methods of diagnostics of bovine mycoplasma are used, such as MALDI-TOF MS (Matrix assisted laser desorption ionization time-of-light mass spectrometry), latex agglutination, immunochromatographic assays etc., however, each method has its advantages and disadvantages, which should be considered before application (M.J. Calcutt et al., 2018; B. Pardon et al., 2020). © 2021 Russian Academy of Agricultural Sciences. All rights reserved