8 research outputs found

    An integrated assessment approach for fossil groundwater quality and crop water requirements in the El-Kharga Oasis, Western Desert, Egypt

    Get PDF
    Study region: The El-Kharga Oasis in the Western Desert of Egypt is selected as the study area due to its hyberarid climate condition and water scarcity. In this region, the fossil groundwater is the main water source; therefore, preserving groundwater quality and quantity is mandatory. Study focus: This study evaluated groundwater suitability for irrigation purposes and assessed the water requirements of cultivated crops to optimize the water supply in hyperarid climate regions. In total, 79 deep groundwater samples were hydrochemically tested to determine the suitability for irrigation by assessing the key water quality parameters. Spatial distribution maps of all chemical parameters, such as pH, EC, SAR, RSC, SSP, TDS, total hardness, Na+, K+, Ca++, Mg++, Fe, Mn, Cl-, and SO4—, were developed. The FAO CROPWAT 8.0 model, based on the Penman–Monteith equation, was used to forecast agricultural water requirements for three years, 2010, 2011, and 2012. New hydrological insights for the region: The groundwater had medium salinity and low sodium in 84% of the cases. In comparison, high salinity was found in 16% of the samples, indicating that groundwater can be used for many soil types with a low risk of exchangeable sodium. Except for 15 of the 79 wells, all groundwater samples had chloride concentrations less than 100 mg/l. The sulfate ion distribution map showed a low sulfate ion content in the extreme western south. The total annual irrigation water requirements of all crops for 2010, 2011 and 2012 were 199.4, 215.1, and 231.7 million m3/year, respectively, reflecting a gradual increase of approximately 16.57 million m3/total area/year due to the expansion of the cultivated area. The analysis showed that modern irrigation systems reduced the amount of irrigation water by 32% and increased the cultivated area by 45% compared to conventional irrigation methods. Severe groundwater depletion occurred during the dry season from March to July, which exacerbated the water stress in the study region. The results confirmed that the region is under water stress. Accordingly, water conservation is urgently recommended

    A Predictive Study of the Redistribution of Some Bread Wheat Genotypes in Response to Climate Change in Egypt

    No full text
    Climate change and global warming have become the most significant challenges to the agricultural production worldwide, especially in arid and semiarid areas. The main purpose of plant breeding programs now is to produce a genetically wide range of genotypes that can withstand the adverse effects of climate change. Moreover, farmers have to reallocate their cultivars due to their ability to tolerate unfavorable conditions. During this study, two field experiments and climate analysis based on 150 years of data are conducted to reallocate some genotypes of bread wheat in respect to climate change based on their performance under drought stress conditions. Climatic data indicate that there is an increase in temperature over all Egyptian sites coupled with some changes in rain amount. Among the tested cultivars, cultivar Giza 160 was the perfect one, while cultivar Masr 03 was the weakest one. Susceptibility indices are a good tool for discovering the superior genotypes under unfavorable conditions and, interestingly, some of the cultivars with high performance were among the superior cultivars in more than one of the tested traits in this study. Finally, combining the climatic data and the experimental data, we can conclude that cultivars Giza 160 and Sakha 94 are suitable for growning in zones with harsh environments, such as the eastern desert and southern Egypt, while cultivars Gemmeza 11, Sahel 01, Sakha 98, Sids 12, and Sakha 93 are suitable for growning in zones with good growing conditions, such as the Nile Delta region and northern Egypt

    分子生物学的手法を用いたコムギ乾燥ストレス耐性の改良 -根の伸長角度と葉繊毛に関する遺伝解析-

    Get PDF
    京都大学0048新制・課程博士博士(農学)甲第16467号農博第1900号新制||農||995(附属図書館)学位論文||H23||N4643(農学部図書室)29109京都大学大学院農学研究科農学専攻(主査)教授 奥本 裕, 教授 白岩 立彦, 教授 冨永 達学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDA

    Genetic Mapping Reveals Novel Exotic and Elite QTL Alleles for Salinity Tolerance in Barley

    No full text
    Soil salinity is one of the constraints of crop production in Egypt. The aims of this study were to identify genomic regions associated with grain weight and its related traits along with their salinity tolerance indices and to identify the most salinity tolerant and high-yielding genotypes. Therefore, we evaluated an advanced backcross mapping population of barley in newly reclaimed soil under two salinity levels of groundwater aquifers in South of Sinai, Egypt. We detected significant QTL associated with grain weight related attributes and the salinity tolerance index (STI) distributed throughout the whole genome of barley, which can be used to enhance salinity tolerance. Moreover, the markers bPb-3739 (4H, 96.3 cM), AF043094A (5H, 156 cM), bPb-8161 (7H, 2.22 cM), and bPb-5260 (7H, 115.6 cM), were the most important identified genomic regions corresponding to vernalization, dwarfing and dehydrin genes, which are correlated with salinity tolerance. Additionally, the doubled haploid lines SI001, SI043, SI044, SI028, SI242, SI035, and SI005 had the highest STI values based on yield average. The present study demonstrated that wild and elite barley do harbor novel valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits under salinity conditions

    Modeling of Phosphorus Nutrition to Obtain Maximum Yield, High P Use Efficiency and Low P-Loss Risk for Wheat Grown in Sandy Calcareous Soils

    No full text
    Fertilization with high levels of phosphorus increases the risk of environmental pollution. Identification of critical values of P in soil (SOP) and in plant tissues (PiP) is essential for achieving the maximum wheat yield without P loss. The critical value is the value of P which gives the optimum yield; the response of crop yield to P fertilization above this value is not predictable or nil. Here, a 4-year field experiment was conducted to identify the SOP and PiP for achieving maximum yield of bread wheat using 11 rates of P fertilization (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 150 kg P2O5 ha−1). The linear–linear and Mitscherlich exponential models were employed to estimate the PiP and SOP. The degree of phosphorus saturation (DPS) was used to assess the potential environmental risk; furthermore, phosphorus use efficiency (PUE) was also calculated under the studied fertilization levels. Phosphorus in soil and wheat plant was affected by the application rates and growing seasons. Increasing P fertilization rates led to gradual increases in soil and plant P. The SOP ranged between 21 and 32 mg kg−1, while the PiP ranged between 6.40 and 7.49 g kg−1. The critical values of P calculated from the Mitscherlich exponential models were 20% higher than those calculated from the linear–linear models. Adding levels of P fertilization ≥90 kg P2O5 ha−1 leads to higher potentials of P runoff and leaching, in addition, PUE decreased sharply under high P fertilization levels. The response of wheat yield to P fertilization in sandy calcareous soil is predictable below Olsen P values of 21 mg kg−1. Identification of critical P values for wheat production is of great importance to help policy makers improve P use efficiency and attain optimum wheat yield under eco-friendly environmental conditions by eliminating the accumulation of excess P fertilizers in soil and water
    corecore