2 research outputs found

    Binary ethosomes for the enhanced topical delivery and antifungal efficacy of ketoconazole

    No full text
    This work aimed to prepare ketoconazole-loaded ethosomes and binary ethosomes to improve its skin delivery and antifungal efficacy. A 32 factorial design was used to optimize the ethosomes and formulate ketoconazole-loaded binary ethosomes. Ethosomes and binary ethosomes were evaluated for particle size, polydispersity index, zeta potential, percent drug entrapment efficiency, drug release, skin permeation and deposition and antifungal efficacy. The ethosomes particle size ranged from 78.99±16.72 to 321.53±10.41 nm and decreased by increasing phospholipid and ethanol concentrations. The polydispersity index values were in the range of 0.17±0.01 to 0.49 ± 0.04. The percent drug entrapment efficiency ranged from 36.09±2.66 to 95.89±0.19 and increased by increasing phospholipid concentration while ethanol concentration had the opposite effect. The binary ethosomes had smaller size but similar drug entrapment efficiency and zeta potential compared with the ethosomes. They had significantly higher percent drug release (∼96%) and permeation (∼95%) through rat skin compared with the ethosomes (93% and 90%, respectively). Binary ethosomes and ethosomes had, respectively 1.9 and 1.8-fold higher drug skin permeation and 5.3- and 5.6-fold higher drug deposition in the epidermis/dermis compared with the drug suspension. The antifungal efficacy of the drug-loaded ethosomes and binary ethosomes were similar to the drug hydroalcoholic solution. Collectively, these results confirm the potential of these nanocarriers to enhance drug efficacy given their small size, sustained drug release and enhanced skin permeability

    The Anti-Rheumatic Drug, Leflunomide, Induces Nephrotoxicity in Mice via Upregulation of TGFβ-Mediated p53/Smad2/3 Signaling

    No full text
    Recent studies indicated renal toxicity and interstitial nephritis in patients receiving leflunomide (LEFN), but the exact mechanism is still unknown. The transforming growth factor β (TGFβ)/p53/Smad2/3 pathway crucially mediates renal fibrosis. We aimed to assess the nephrotoxic effect of LEFN in mice and the possible role of TGFβ-stimulated p53/SMAD2/3 signaling. The study design involved distributing sixty male albino mice into four groups: (i) vehicle-treated mice, (ii) LEFN (2.5 mg/kg), (iii) LEFN (5 mg/kg), and (iv) LEFN (10 mg/kg). The drug was given orally every 48 h and continued for 8 weeks. Blood samples were then taken from mice for the determination of kidney function parameters. Right kidneys were used for histopathologic staining and immunohistochemistry, whereas left kidneys were frozen and used for Western blot analysis of the target proteins, p-p53 and Smad2/3. Results indicated that chronic administration of LEFN in mice resulted in a four- and nine-fold increase in serum urea and creatinine levels, respectively. Kidney specimens stained with hematoxylin and eosin or periodic acid–Schiff showed significant histopathological manifestations, such as cellular irregularity, interstitial congestion, and moderate lymphocytic inflammatory infiltrate in mice treated with LEFN. Western blotting indicated upregulation of the p-p53/Smad2/3 proteins. LEFN, especially in the highest dose (10 mg/kg), produced prominent nephrotoxicity in mice. This toxicity is mediated through stimulating fibrotic changes through TGFβ-stimulated p53/Smad2/3 signaling and induction of glomerular and tubular apoptosis. An improved understanding of LEFN-induced nephrotoxicity would have great implications in the prediction, prevention, and management of leflunomide-treated rheumatic patients, and may warrant further clinical studies for following up these toxidromes
    corecore