11 research outputs found
Site-directed Mutagenesis of Serine-72 Reveals the Location of the Fructose 6-phosphate Regulatory Site of the Agrobacterium tumefaciensADP-glucose Pyrophosphorylase
The allosteric regulation of ADP–glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis
Synthesis of Two Novel Copper (II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations
In this study, we report the synthesis of two new copper complexes: [Cu(CHO)(SCN)(CHN)], denoted as (C-1), and [Cu(CHO) (CHN) Cl]·HO, denoted as (C-2). They are based on 2,2′-bipyridine or 1,10-phenanthroline and 2-hydroxy-1-naphtaldehyde ligands. The obtained complexes were characterized by FT-IR, UV-visible spectroscopy, and single-crystal X-ray diffraction analysis. Molecular docking was employed to predict the binding mode involved in the interaction between the two synthetic copper (II) complexes and HIV-1 protease enzyme. The X-ray structural analysis revealed that the crystal structures of both complexes are mainly stabilized by several intra- and intermolecular hydrogen bonds. The fingerprint plots associated with the Hirshfeld surfaces of both complexes clearly show that H···H interactions provide the largest contributions. According to the docking results, the synthesized complexes exhibit promising features which enable them to be bound to the HIV-protease enzyme
Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders
Neuropeptides play a major role in maintaining normal brain development in children. Dysfunction of some specific neuropeptides can lead to autism spectrum disorders (ASD) in terms of social interaction and repetitive behavior, but the exact underlying etiological mechanisms are still not clear. In this study, we used an animal model of autism to investigate the role of bee pollen and probiotic in maintaining neuropeptide levels in the brain. We measured the Alpha-melanocyte-stimulating hormone (α-MSH), Beta-endorphin (β-End), neurotensin (NT), and substance P (SP) in brain homogenates of six studied groups of rats. Group I served as control, given only PBS for 30 days; Group II as an autistic model treated with 250 mg PPA/kg BW/day for 3 days after being given PBS for 27 days. Groups III-VI were denoted as intervention groups. G-III was treated with bee pollen (BP) 250 mg/kg body weight/day; G-IV with Lactobacillus paracaseii (LB) (109 CFU/mL) suspended in PBS; G-V with 0.2 g/kg body weight/day Protexin®, a mixture of probiotics (MPB); and G-VI was transplanted with stool from normal animals (FT) for 27 days prior to the induction of PPA neurotoxicity on the last 3 days of study (days 28–30). The obtained data were analyzed through the use of principal component analysis (PCA), discriminant analysis (DA), hierarchical clustering, and receiver operating characteristic (ROC) curves as excellent statistical tools in the field of biomarkers. The obtained data revealed that brain levels of the four measured neuropeptides were significantly reduced in PPA-treated animals compared to healthy control animals. Moreover, the findings demonstrate the ameliorative effects of bee pollen as a prebiotic and of the pure or mixed probiotics. This study proves the protective effects of pre and probiotics against the neurotoxic effects of PPA presented as impaired levels of α-MSH, β-End, NT, and SP
Adsorptive Performance of Polypyrrole-Based KOH-Activated Carbon for the Cationic Dye Crystal Violet: Kinetic and Equilibrium Studies
The aim of this work was to investigate the adsorptive performance of the polypyrrole-based KOH-activated carbon (PACK) in the removal of the basic dye crystal violet (CV) using a batch adsorption system. The equilibrium data, obtained at different initial CV concentrations (C0=50–500 mg/L) and temperatures (25–45°C), were interpreted using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, with the Langmuir model providing a better fit (R2≥0.9997) and a maximum adsorption capacity of 497.51 mg/g at 45°C. Under the examined conditions, the values of the thermodynamic parameters free energy, enthalpy, and entropy indicate a spontaneous, endothermic, and physisorption adsorption process. The kinetic data of the adsorption process were very well described by a pseudo-second-order model (R2≥0.9996). However, surface diffusion seems to be the main rate-controlling step. Thus, we concluded that PACK shows commercial potential for the removal of cationic dyes such as CV from industrial effluent
Effect of the double mutation Y39A/R75A on the allosteric regulation of ADP-glucose pyrophosphorylase from agrobacterium tumefaciens
ADP-glucose pyrophosphorylase is the enzyme responsible for the production of ADP-glucose, which is used for the synthesis of starch in plants and glycogen in bacteria. This enzyme within our model organism Agrobacterium tumefaciens is allosterically regulated through various activators and inhibitors. Previously single mutation residues at predetermined sites of interest within the wild type of A. tumefaciens have been studied. Two of these sites Tyr 39 and Arg 75, are residues located on the allosteric binding site of the activator Fru6P. Therefore, we targeted this site with a double mutation of both residues to an alanine and observed the results
Microbiological trends and mortality risk factors of central line-associated bloodstream infections in an academic medical center 2015–2020
Abstract Background Despite tremendous efforts to prevent central line-associated bloodstream infections, they still remain life-threatening complications among hospitalized patients with significant morbidity and mortality worldwide. The emerging antibiotic-resistant bacteria and other risk factors, including patient comorbidities, complicate patient management. Methods A single-center retrospective observational study was conducted at King Fahad Hospital of the University, Eastern Province, Saudi Arabia. Hospitalized patients with confirmed central line-associated bloodstream infections between January 2015 and December 2020 were included. The primary objectives were to investigate the trends in antibiotic susceptibility patterns of the causative agents, coexisting comorbid conditions, and other risk factors associated with mortality. Results A total of 214 patients with confirmed central line-associated bloodstream infections were included (CLABSI). The overall 30-day mortality rate was 33.6%. The infection rates per 1000 central line days for medical, surgical, and pediatric intensive care units were 4.97, 2.99, and 4.56 per 1000 CL days, respectively. The overall microbiological trends showed a predominance of Gram-negative agents, a steady increase of fungal CLABSI up to 24.0% in 2020, and a high prevalence of multidrug resistance up to 47% of bacterial CLABSI. In addition, the study indicates a significant negative surviving correlation with diabetes mellitus, cardiovascular disease, lung disease, chronic kidney disease, and the presence of ≥ 3 comorbidities (P < 0.05). Conclusion The microbiological trends of the study population demonstrated a steady increase of CLABSI caused by Candida spp. with a predominance of Gram-negative pathogens. Stratifying the patients according to relevant mortality risk factors, including patient comorbidities, will help reduce CLABSI rates and improve patient outcomes
Anticandidal Activity of a Siderophore from Marine Endophyte <i>Pseudomonas aeruginosa</i> Mgrv7
An endophytic symbiont P. aeruginosa-producing anticandidal siderophore was recovered from mangrove leaves for the first time. Production was optimal in a succinate medium supplemented with 0.4% citric acid and 15 µM iron at pH 7 and 35 °C after 60 h of fermentation. UV spectra of the acidic preparation after purification with Amberlite XAD-4 resin gave a peak at 400 nm, while the neutralized form gave a peak at 360 nm. A prominent peak with RP-HPLC was obtained at RT 18.95 min, confirming its homogeneity. It was pH stable at 5.0–9.5 and thermally stable at elevated temperatures, which encourages the possibility of its application in extreme environments. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against Candida spp. Were in the range of 128 µg/mL and lower. It enhanced the intracellular iron accumulation with 3.2–4.2-fold (as judged by atomic absorption spectrometry) with a subsequent increase in the intracellular antioxidative enzymes SOD and CAT. Furthermore, the malondialdehyde (MDA) concentration due to cellular lipid peroxidation increased to 3.8-fold and 7.3-fold in C. albicans and C. tropicalis, respectively. The scanning electron microscope (SEM) confirmed cellular damage in the form of roughness, malformation, and production of defensive exopolysaccharides and/or proteins after exposure to siderophore. In conclusion, this anticandidal siderophore may be a promising biocontrol, nonpolluting agent against waterborne pathogens and pathogens of the skin. It indirectly kills Candida spp. by ferroptosis and mediation of hyperaccumulation of iron rather than directly attacking the cell targets, which triggers the activation of antioxidative enzymes
Interleukin-22 Polymorphisms in Plasmodium falciparum-Infected Malaria Patients
Background and Objectives. Malaria infection, caused by Plasmodium falciparum, is the most lethal and frequently culminates in severe clinical complications. Interleukin-22 (IL-22) has been implicated in several diseases including malaria. The objective of this study was to investigate the role of IL-22 gene polymorphisms in P. falciparum infection. Material and Methods. Ten single-nucleotide polymorphisms (SNPs), rs976748, rs1179246, rs2046068, rs1182844, rs2227508, rs2227513, rs2227478, rs2227481, rs2227491, and rs2227483, of IL-22 gene were genotyped through PCR-based assays of 250 P. falciparum-infected patients and 200 healthy controls. In addition, a luciferase reporter assay was done to assess the role of the rs2227513 SNP in IL-22 gene promoter activity. Results. We found that the rs2227481 TT genotype (odds ratio 0.254, confidence interval = 0.097-0.663, P=0.002) and the T allele is associated with protection against P. falciparum malaria as well as the rs2227483 AT genotype (odds ratio 0.375, confidence interval = 0.187-0.754, P=0.004). The haplotype A-T-T of rs1179246, rs1182844, and rs976748 was statistically more frequent in the control group (frequency 41%, P=0.034) as well as the haplotype A-G of rs2046068 and rs2227491 (frequency 49.4%, P=0.041). The variant rs2227513 G allele had a statistically higher activity (P<0.0001) with the luciferase reporter assay. Conclusion. The study suggests that IL-22 polymorphisms in rs2227481 and rs2227483 could contribute to protection against P. falciparum malaria. Also, the G allele of rs2227513, located in the promoter region of IL-22 gene, could be essential for higher expression levels of IL-22 cytokine
Incidence and Clinical Outcomes of New-Onset Atrial Fibrillation in Critically Ill Patients with COVID-19: A Multicenter Cohort Study
Atrial fibrillation (Afib) can contribute to a significant increase in mortality and morbidity in critically ill patients. Thus, our study aims to investigate the incidence and clinical outcomes associated with the new-onset Afib in critically ill patients with COVID-19. A multicenter, retrospective cohort study includes critically ill adult patients with COVID-19 admitted to the intensive care units (ICUs) from March, 2020 to July, 2021. Patients were categorized into two groups (new-onset Afib vs control). The primary outcome was the in-hospital mortality. Other outcomes were secondary, such as mechanical ventilation (MV) duration, 30-day mortality, ICU length of stay (LOS), hospital LOS, and complications during stay. After propensity score matching (3:1 ratio), 400 patients were included in the final analysis. Patients who developed new-onset Afib had higher odds of in-hospital mortality (OR 2.76; 95% CI: 1.49-5.11, P = .001). However, there was no significant differences in the 30-day mortality. The MV duration, ICU LOS, and hospital LOS were longer in patients who developed new-onset Afib (beta coefficient 0.52; 95% CI: 0.28-0.77; P < .0001,beta coefficient 0.29; 95% CI: 0.12-0.46; P < .001, and beta coefficient 0.35; 95% CI: 0.18-0.52; P < .0001; respectively). Moreover, the control group had significantly lower odds of major bleeding, liver injury, and respiratory failure that required MV. New-onset Afib is a common complication among critically ill patients with COVID-19 that might be associated with poor clinical outcomes; further studies are needed to confirm these findings
Global economic burden of unmet surgical need for appendicitis
Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially