3 research outputs found

    Replacement of surgical vasectomy through the use of wild-type sterile hybrids

    No full text
    For the production and rederivation of mouse strains, pseudopregnant female mice are used for embryo transfer and serve as surrogate mothers to support embryo development to term. Vasectomized males are commonly used to render pseudopregnancy in females, generated by surgical procedures associated with considerable pain and discomfort. Genetically modified mouse strains with a sterility phenotype provide a non-surgical replacement and represent an important application of the 3Rs (Replacement, Reduction, Refinement). However, the maintenance of such genetically modified mouse strains requires extensive breeding and genotyping procedures, which are regulated procedures under national legislation. As an alternative, we have explored the use of sterile male hybrids that result when two wild-type mouse subspecies, Mus musculus musculus and Mus musculus domesticus, interbreed. We find the male STUSB6F1 hybrid, resulting from the mating of female STUS/Fore with male C57BL/6J, ideally suited and demonstrate that its performance for the production of oviduct and uterine transfer recipients is indistinguishable when compared to surgically vasectomized mice. The use of these sterile hybrids avoids the necessity for surgical procedures or the breeding of sterile genetically modified lines and can be generated by the simple mating of two wild-type laboratory strains—a non-regulated procedure. Furthermore, in contrast with the breeding of genetically sterile mice, all male offspring are sterile and suitable for the generation of pseudopregnancy, allowing their efficient production with minimal breeding pairs

    Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes

    No full text
    CRISPR/Cas9 machinery delivered as ribonucleoprotein (RNP) to the zygote has become a standard tool for the development of genetically modified mouse models. In recent years, a number of reports have demonstrated the effective delivery of CRISPR/Cas9 machinery via zygote electroporation as an alternative to the conventional delivery method of microinjection. In this study, we have performed side-by-side comparisons of the two RNP delivery methods across multiple gene loci and conclude that electroporation compares very favourably with conventional pronuclear microinjection, and report an improvement in mutagenesis efficiency when delivering CRISPR via electroporation for the generation of simple knock-in alleles using single-stranded oligodeoxynucleotide (ssODN) repair templates. In addition, we show that the efficiency of knock-in mutagenesis can be further increased by electroporation of embryos derived from Cas9-expressing donor females. The maternal supply of Cas9 to the zygote avoids the necessity to deliver the relatively large Cas9 protein, and high efficiency generation of both indel and knock-in allele can be achieved by electroporation of small single-guide RNAs and ssODN repair templates alone. Furthermore, electroporation, compared to microinjection, results in a higher rate of embryo survival and development. The method thus has the potential to reduce the number of animals used in the production of genetically modified mouse models

    Altering the binding properties of PRDM9 partially restores fertility across the species boundary

    No full text
    Sterility or subfertility of male hybrid offspring is commonly observed. This phenomenon contributes to reproductive barriers between the parental populations, an early step in the process of speciation. One frequent cause of such infertility is a failure of proper chromosome pairing during male meiosis. In subspecies of the house mouse, the likelihood of successful chromosome synapsis is improved by the binding of the histone methyltransferase PRDM9 to both chromosome homologs at matching positions. Using genetic manipulation, we altered PRDM9 binding to occur more often at matched sites, and find that chromosome pairing defects can be rescued, not only in an intersubspecific cross, but also between distinct species. Using different engineered variants, we demonstrate a quantitative link between the degree of matched homolog binding, chromosome synapsis, and rescue of fertility in hybrids between Mus musculus and Mus spretus. The resulting partial restoration of fertility reveals additional mechanisms at play that act to lock-in the reproductive isolation between these two species
    corecore