51 research outputs found

    Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors

    Get PDF
    Synchronous reluctance (SyR) motors are well suited to a zero-speed sensorless control, because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in the paper, as a function of the working point. The so-calculated errors are then found in good accordance with the purposely obtained experimental measurements. The impact of the amplitude of the carrier voltage is then pointed out, leading to a mixed (carrier injection plus electromotive force estimation) control scheme. Last, a scheme of this type is used, with a commercial transverse-laminated SyR motor. The robustness against cross-saturation is shown, in practice, and the obtained drive performance is pointed out proving to be effective for a general-purpose applicatio

    Cross-Saturation Effects in IPM Motors and Related Impact on Sensorless Control

    Get PDF
    Permanent-magnet-assisted synchronous reluctance motors are well suited to zero-speed sensorless control because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in this paper as a function of the working point. The errors that are calculated are then found to be in good accordance with the purposely obtained experimental measurement

    Position-sensorless control of permanent-magnet-assisted synchronous reluctance motor

    Get PDF
    The sensorless control of permanent-magnet-assisted synchronous reluctance (PMASR) motors is investigated, in order to conjugate the advantages of the sensorless control with full exploitation of the allowed operating area, for a given inverter. An additional pulsating flux is injected in the d-axis direction at low and zero speed, while it is dropped out, at large speed, to save voltage and additional loss. A flux-observer-based control scheme is used, which includes an accurate knowledge of the motor magnetic behavior. This leads, in general, to good robustness against load variations, by counteracting the magnetic cross saturation effect. Moreover, it allows an easy and effective correspondence between the wanted torque and flux and the set values of the chosen control variables, that is d-axis flux and q-axis current. Experimental verification of the proposed method is given, both steady-state and dynamic performance are outlined. A prototype PMASR motor will be used to this aim, as part of a purposely assembled prototype drive, for light traction application (electric scooter

    Thermal analysis of induction and synchronous reluctance motors

    Get PDF
    In this paper, the thermal behavior of two induction motors (2.2 and 4 kW, four poles) and two synchronous reluctance motors [(SynRMs) transverse-laminated] are investigated and compared. Both motor types use the same stator but have different rotors. Using a lumped-parameter simulation program, a thermal analysis has been also carried out, and the obtained results have been compared with the experimental ones. A direct comparison of the thermal behavior of the two motor types has thus been made for constant load and constant average copper temperature conditions. Inasmuch as the SynRM has negligible rotor losses compared with the induction motor, it is capable of a larger rated torque, from 10% to more than 20%, depending on the relative size of end connections and motor lengt

    Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds

    Get PDF
    Fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. The Mediterranean area is a biodiversity hotspot that is increasingly threatened by intense land use. Therefore, to achieve a balance between conservation and human development, a better understanding of the impact of land use on the underlying fungal communities is needed.We used parallel pyrosequencing of the nuclear ribosomal ITS regions to characterize the fungal communities in five soils subjected to different anthropogenic impact in a typical Mediterranean landscape: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards. Marked differences in the distribution of taxon assemblages among the different sites and communities were found. Data analyses consistently indicated a sharp distinction of the fungal community of the cork oak forest soil from those described in the other soils. Each soil showed features of the fungal assemblages retrieved which can be easily related to the above-ground settings: ectomycorrhizal phylotypes were numerous in natural sites covered by trees, but were nearly completely missing from the anthropogenic and grass-covered sites; similarly, coprophilous fungi were common in grazed sites.Data suggest that investigation on the below-ground fungal community may provide useful elements on the above-ground features such as vegetation coverage and agronomic procedures, allowing to assess the cost of anthropogenic land use to hidden diversity in soil. Datasets provided in this study may contribute to future searches for fungal bio-indicators as biodiversity markers of a specific site or a land-use degree

    High performance control of synchronous reluctance motor

    No full text
    Based on (d, q) synchronous frame, the control problems of synchronous reluctance motors are outlined. In particular, the effect of magnetic saturation, core loss and angular measurement errors of various type are evidenced. A flux-observer based control scheme is proposed, capable of overcoming most of the above problems. The proposed control has been implemented on a prototype drive, adopting a 17 Nm, 8,000 rpm motor. The experimental results show a quite good performance, with particular emphasis to those applications which require a large constant-power speed range

    High-performance control of synchronous reluctance motors

    No full text
    Based on a (d, q) synchronous frame, the control problems of synchronous reluctance motors are outlined. In particular, the effect of magnetic saturation, core loss, and angular measurement errors of various types are evidenced. A flux-observer-based control scheme, capable of overcoming most of the above problems, is proposed. The proposed control has been implemented on a prototype drive, adopting a 17-N-m 8000-r/min motor. The experimental results show quite a good performance, with particular emphasis on those applications which require a large constant-power speed range. \uc2\ua9 1997 IEEE
    corecore