38 research outputs found

    The SAFE-trial:Safe surgery for glioblastoma multiforme: Awake craniotomy versus surgery under general anesthesia. Study. protocol for a multicenter prospective randomized controlled trial

    Get PDF
    Background: Surgery of GBM nowadays is usually performed under general anesthesia (GA) and resections are often not as aggressive as possible, due to the chance of seriously damaging the patient with a rather low life expectancy. A surgical technique optimizing resection of the tumor in eloquent areas but preventing neurological deficits is necessary to improve survival and quality of life in these patients. Awake craniotomy (AC) with the use of cortical and subcortical stimulation has been widely implemented for low-grade glioma resections (LGG), but not yet for GBM. AC has shown to increase resection percentage and preserve quality of life in LGG and could thus be of important value in GBM surgery. Methods/design: This study is a prospective, multicenter, randomized controlled trial (RCT). Consecutive patients with a glioblastoma in or near eloquent areas (Sawaya grading II/III) will be 1:1 randomized to awake craniotomy or craniotomy under general anesthesia. 246 patients will be included in neurosurgical centers in the Netherlands and Belgium. Primary end-points are: 1) Postoperative neurological morbidity and 2) Proportion of patients with gross-total resections. Secondary end-points are: 1) Health-related quality of life; 2) Progression-free survival (PFS); 3) Overall survival (OS) and 4) Frequency and severity of Serious Adverse Effects in each group. Also, a cost-benefit analysis will be performed. All patients will receive standard adjuvant treatment with concomitant chemoradiotherapy. Discussion: This RCT should demonstrate whether AC is superior to craniotomy under GA on neurological morbidity, extent of resection and survival for glioblastoma resections in or near eloquent areas. Trial registration: Clinicaltrials.gov: NCT03861299 Netherlands Trial Register (NTR): NL758

    Quantifying eloquent locations for glioblastoma surgery using resection probability maps

    Get PDF
    OBJECTIVE Decisions in glioblastoma surgery are often guided by presumed eloquence of the tumor location. The authors introduce the "expected residual tumor volume" (eRV) and the "expected resectability index" (eRI) based on previous decisions aggregated in resection probability maps. The diagnostic accuracy of eRV and eRI to predict biopsy decisions, resectability, functional outcome, and survival was determined. METHODS Consecutive patients with first-time glioblastoma surgery in 2012-2013 were included from 12 hospitals. The eRV was calculated from the preoperative MR images of each patient using a resection probability map, and the eRI was derived from the tumor volume. As reference, Sawaya's tumor location eloquence grades (EGs) were classified. Resectability was measured as observed extent of resection (EOR) and residual volume, and functional outcome as change in Karnofsky Performance Scale score. Receiver operating characteristic curves and multivariable logistic regression were applied. RESULTS Of 915 patients, 674 (74%) underwent a resection with a median EOR of 97%, functional improvement in 71 (8%), functional decline in 78 (9%), and median survival of 12.8 months. The eRI and eRV identified biopsies and EORs of at least 80%, 90%, or 98% better than EG. The eRV and eRI predicted observed residual volumes under 10, 5, and 1 ml better than EG. The eRV, eRI, and EG had low diagnostic accuracy for functional outcome changes. Higher eRV and lower eRI were strongly associated with shorter survival, independent of known prognostic factors. CONCLUSIONS The eRV and eRI predict biopsy decisions, resectability, and survival better than eloquence grading and may be useful preoperative indices to support surgical decisions

    On the cutting edge of glioblastoma surgery:where neurosurgeons agree and disagree on surgical decisions

    Get PDF
    OBJECTIVE: The aim of glioblastoma surgery is to maximize the extent of resection while preserving functional integrity. Standards are lacking for surgical decision-making, and previous studies indicate treatment variations. These shortcomings reflect the need to evaluate larger populations from different care teams. In this study, the authors used probability maps to quantify and compare surgical decision-making throughout the brain by 12 neurosurgical teams for patients with glioblastoma. METHODS: The study included all adult patients who underwent first-time glioblastoma surgery in 2012-2013 and were treated by 1 of the 12 participating neurosurgical teams. Voxel-wise probability maps of tumor location, biopsy, and resection were constructed for each team to identify and compare patient treatment variations. Brain regions with different biopsy and resection results between teams were identified and analyzed for patient functional outcome and survival. RESULTS: The study cohort consisted of 1087 patients, of whom 363 underwent a biopsy and 724 a resection. Biopsy and resection decisions were generally comparable between teams, providing benchmarks for probability maps of resections and biopsies for glioblastoma. Differences in biopsy rates were identified for the right superior frontal gyrus and indicated variation in biopsy decisions. Differences in resection rates were identified for the left superior parietal lobule, indicating variations in resection decisions. CONCLUSIONS: Probability maps of glioblastoma surgery enabled capture of clinical practice decisions and indicated that teams generally agreed on which region to biopsy or to resect. However, treatment variations reflecting clinical dilemmas were observed and pinpointed by using the probability maps, which could therefore be useful for quality-of-care discussions between surgical teams for patients with glioblastoma

    Preoperative Brain Tumor Imaging:Models and Software for Segmentation and Standardized Reporting

    Get PDF
    For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16-54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5-15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports

    Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting

    Get PDF
    For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16–54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5–15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.publishedVersio

    Between‐hospital variation in rates of complications and decline of patient performance after glioblastoma surgery in the dutch Quality Registry Neuro Surgery

    Get PDF
    Introduction: For decisions on glioblastoma surgery, the risk of complications and decline in performance is decisive. In this study, we determine the rate of complications and performance decline after resections and biopsies in a national quality registry, their risk factors and the risk-standardized variation between institutions. Methods: Data from all 3288 adults with first-time glioblastoma surgery at 13 hospitals were obtained from a prospective population-based Quality Registry Neuro Surgery in the Netherlands between 2013 and 2017. Patients were stratified by biopsies and resections. Complications were categorized as Clavien-Dindo grades II and higher. Performance decline was considered a deterioration of more than 10 Karnofsky points at 6 weeks. Risk factors were evaluated in multivariable logistic regression analysis. Patient-specific expected and observed complications and performance declines were summarized for institutions and analyzed in funnel plots. Results: For 2271 resections, the overall complication rate was 20 % and 16 % declined in performance. For 1017 biopsies, the overall complication rate was 11 % and 30 % declined in performance. Patient-related characteristics were significant risk factors for complications and performance decline, i.e. higher age, lower baseline Karnofsky, higher ASA classification, and the surgical procedure. Hospital characteristics, i.e. case volume, university affiliation and biopsy percentage, were not. In three institutes the observed complication rate was significantly less than expected. In one institute significantly more performance declines were observed than expected, and in one institute significantly less. Conclusions: Patient characteristics, but not case volume, were risk factors for complications and performance decline after glioblastoma surgery. After risk-standardization, hospitals varied in complications and performance declines

    Between-hospital variation in mortality and survival after glioblastoma surgery in the Dutch Quality Registry for Neuro Surgery

    Get PDF
    Purpose: Standards for surgical decisions are unavailable, hence treatment decisions can be personalized, but also introduce variation in treatment and outcome. National registrations seek to monitor healthcare quality. The goal of the study is to measure between-hospital variation in risk-standardized survival outcome after glioblastoma surgery and to explore the association between survival and hospital characteristics in conjunction with patient-related risk factors. Methods: Data of 2,409 adults with first-time glioblastoma surgery at 14 hospitals were obtained from a comprehensive, prospective population-based Quality Registry Neuro Surgery in The Netherlands between 2011 and 2014. We compared the observed survival with patient-specific risk-standardized expected early (30-day) mortality and late (2-year) survival, based on age, performance, and treatment year. We analyzed funnel plots, logistic regression and proportional hazards models. Results: Overall 30-day mortality was 5.2% and overall 2-year survival was 13.5%. Median survival varied between 4.8 and 14.9 months among hospitals, and biopsy percentages ranged between 16

    Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting

    Get PDF
    For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16–54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5–15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports

    The role of Harvey Cushing and Walter Dandy in the evolution of modern neurosurgery in the Netherlands, illustrated by their correspondence Historical vignette

    No full text
    <p>The development of modern neurosurgery in the Netherlands, which took place in the 1920s, was highly influenced by the personal involvement of both Harvey Cushing and Walter Dandy, each in his own way. For the present article, the authors consulted the correspondence (kept at the Cushing/Whitney Medical Library in New Haven and the Alan Mason Chesney Medical Archives in Baltimore) of Cushing and Dandy with their Dutch disciples. The correspondence provides a unique inside view into the minds of both neurosurgical giants. After the neurologist Bernard Brouwer had paved the way for sending the Dutch surgeon Ignaz Oljenick overseas, Cushing personally took the responsibility to train him (1927-1929). On his return to Amsterdam, Oljenick and Brouwer established the first neurosurgical department in the country. Encouraged by Oljenick's favorable results, a number of Dutch general surgeons started asking Cushing for support. Cushing strategically managed and deflected these requests, probably aiming to increase the advantage of Oljenick and Brouwer. However, the University Hospital in Groningen persisted in the plans to establish its own neurosurgical unit and sent Ferdinand Verbeek to the US in 1932. Although staying at Cushing's department initially, Verbeek ultimately applied to Walter Dandy for a position of visiting voluntary assistant, staying until the end of 1934. Verbeek and Dandy became lifelong friends. On his return to Groningen, Verbeek started practicing neurosurgery, isolated in the northern part of the country. He relied on the support of Dandy, with whom he kept up a regular correspondence, discussing cases and seeking advice. Dandy, on his part, used Verbeek as the ambassador in Europe for his operative innovations. At the beginning of World War II, Oljenick had to flee the country, which concluded the direct line with the Cushing school in the Netherlands. After Dandy's death (1946), Verbeek continued practicing neurosurgery following his style and philosophy. By the time Verbeek died in 1958, the strong American influence on everyday practice of Dutch neurosurgeons had been established. (http://thejns.org/doi/abs/10.3171/2012.12.JNS12601)</p>
    corecore