2 research outputs found

    A novel missense variant in MYO3A

    No full text
    Abstract Background MYO3A, encoding the myosin IIIA protein, is associated with autosomal recessive and autosomal dominant nonsyndromic hearing loss. To date, only two missense variants located in the motor‐head domain of MYO3A have been described in autosomal dominant families with progressive, mild‐to‐profound sensorineural hearing loss. These variants alter the ATPase activity of myosin IIIA. Methods Exome sequencing of a proband from a three‐generation German family with prelingual, moderate‐to‐profound, high‐frequency hearing loss was performed. Segregation analysis confirmed a dominant inheritance pattern. Regression analysis of mean hearing level thresholds per individual and ear was performed at high‐, mid‐, and low‐frequencies. Results A novel heterozygous missense variant c.716T>C, p.(Leu239Pro) in the kinase domain of MYO3A was identified that is predicted in silico as disease causing. High‐frequency, progressive hearing loss was identified. Conclusion Correlation analysis of pure‐tone hearing thresholds revealed progressive hearing loss, especially in the high‐frequencies. In the present study, we report the first dominant likely pathogenic variant in MYO3A in a European family and further support MYO3A as an autosomal dominant hearing loss gene

    Serum neurofilament light chain (sNfL) values in a large cross-sectional population of children with asymptomatic to moderate COVID-19

    No full text
    Background!#!Serum neurofilament light chain (sNfL) is an established biomarker of neuro-axonal damage in multiple neurological disorders. Raised sNfL levels have been reported in adults infected with pandemic coronavirus disease 2019 (COVID-19). Levels in children infected with COVID-19 have not as yet been reported.!##!Objective!#!To evaluate whether sNfL is elevated in children contracting COVID-19.!##!Methods!#!Between May 22 and July 22, 2020, a network of outpatient pediatricians in Bavaria, Germany, the Coronavirus antibody screening in children from Bavaria study network (CoKiBa), recruited healthy children into a cross-sectional study from two sources: an ongoing prevention program for 1-14 years, and referrals of 1-17 years consulting a pediatrician for possible infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined sNfL levels by single molecule array immunoassay and SARS-CoV-2 antibody status by two independent quantitative methods.!##!Results!#!Of the 2652 included children, 148 (5.6%) were SARS-CoV-2 antibody positive with asymptomatic to moderate COVID-19 infection. Neurological symptoms-headache, dizziness, muscle aches, or loss of smell and taste-were present in 47/148 cases (31.8%). Mean sNfL levels were 5.5 pg/ml (SD 2.9) in the total cohort, 5.1 (SD 2.1) pg/ml in the children with SARS-CoV-2 antibodies, and 5.5 (SD 3.0) pg/ml in those without. Multivariate regression analysis revealed age-but neither antibody status, antibody levels, nor clinical severity-as an independent predictor of sNfL. Follow-up of children with pediatric multisystem inflammatory syndrome (n = 14) showed no association with sNfL.!##!Conclusions!#!In this population study, children with asymptomatic to moderate COVID-19 showed no neurochemical evidence of neuronal damage
    corecore