11 research outputs found

    Resonant forcing of nonlinear systems of differential equations

    Full text link
    We study resonances of nonlinear systems of differential equations, including but not limited to the equations of motion of a particle moving in a potential. We use the calculus of variations to determine the minimal additive forcing function that induces a desired terminal response, such as an energy in the case of a physical system. We include the additional constraint that only select degrees of freedom be forced, corresponding to a very general class of problems in which not all of the degrees of freedom in an experimental system are accessible to forcing. We find that certain Lagrange multipliers take on a fundamental physical role as the effective forcing experienced by the degrees of freedom which are not forced directly. Furthermore, we find that the product of the displacement of nearby trajectories and the effective total forcing function is a conserved quantity. We demonstrate the efficacy of this methodology with several examples.Comment: 9 pages, 3 figure

    Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

    Full text link
    Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.Comment: 3 figure

    Resonant forcing of select degrees of freedom of multidimensional chaotic map dynamics

    Full text link
    We study resonances of multidimensional chaotic map dynamics. We use the calculus of variations to determine the additive forcing function that induces the largest response, that is, the greatest deviation from the unperturbed dynamics. We include the additional constraint that only select degrees of freedom be forced, corresponding to a very general class of problems in which not all of the degrees of freedom in an experimental system are accessible to forcing. We find that certain Lagrange multipliers take on a fundamental physical role as the efficiency of the forcing function and the effective forcing experienced by the degrees of freedom which are not forced directly. Furthermore, we find that the product of the displacement of nearby trajectories and the effective total forcing function is a conserved quantity. We demonstrate the efficacy of this methodology with several examples.Comment: 11 pages, 3 figure

    Chaos in a 1-Dimensional Compressible Flow

    Full text link
    We study the dynamics of a one-dimensional discrete flow with open boundaries—a series of moving point particles connected by ideal springs. These particles flow towards an inlet at constant velocity, pass into a region where they are free to move according to their nearest neighbor interactions, and then pass an outlet where they travel with a sinusoidally varying velocity. As the amplitude of the outlet oscillations is increased, we find that the resident time of particles in the chamber follows a bifurcating (Feigenbaum) route to chaos. This irregular dynamics may be related to the complex behavior of many particle discrete flows or is possibly a low-dimensional analogue of nonstationary flow in continuous systems

    Are Discrete Models More Accurate?

    Full text link

    Guiding a self-adjusting system through chaos

    Full text link
    Abstract: We study the parametric controls of self-adjusting systems with numerical models. We investigate the situation where the target dynamics changes slowly and passes through a chaotic region. We find that feedback destabilizes controls if the target is chaotic. If the control is unstable the system migrates to the closest non-chaotic target, i.e. it adapts to the edge of chaos. For weak controls the deviation between system dynamics and target is larger, but the system dynamics is less chaotic and therefore more predictable. I

    Chaos in a one-dimensional compressible flow

    Full text link
    corecore