2,788 research outputs found

    Positivity of High Density Effective Theory

    Get PDF
    We show that the effective field theory of low energy modes in dense QCD has positive Euclidean path integral measure. The complexity of the measure of QCD at finite chemical potential can be ascribed to modes which are irrelevant to the dynamics at sufficiently high density. Rigorous inequalities follow at asymptotic density. Lattice simulation of dense QCD should be possible using the quark determinant calculated in the effective theory.Comment: 10 pages, Revised version, to appear in Rapid Communications of Physical Review

    A quark action for very coarse lattices

    Full text link
    We investigate a tree-level O(a^3)-accurate action, D234c, on coarse lattices. For the improvement terms we use tadpole-improved coefficients, with the tadpole contribution measured by the mean link in Landau gauge. We measure the hadron spectrum for quark masses near that of the strange quark. We find that D234c shows much better rotational invariance than the Sheikholeslami-Wohlert action, and that mean-link tadpole improvement leads to smaller finite-lattice-spacing errors than plaquette tadpole improvement. We obtain accurate ratios of lattice spacings using a convenient ``Galilean quarkonium'' method. We explore the effects of possible O(alpha_s) changes to the improvement coefficients, and find that the two leading coefficients can be independently tuned: hadron masses are most sensitive to the clover coefficient, while hadron dispersion relations are most sensitive to the third derivative coefficient C_3. Preliminary non-perturbative tuning of these coefficients yields values that are consistent with the expected size of perturbative corrections.Comment: 22 pages, LaTe

    Dense quark matter in compact stars

    Full text link
    The densest predicted state of matter is colour-superconducting quark matter, in which quarks near the Fermi surface form a condensate of Cooper pairs. This form of matter may well exist in the core of compact stars, and the search for signatures of its presence is an ongoing enterprise. Using a bag model of quark matter, I discuss the effects of colour superconductivity on the mass-radius relationship of compact stars, showing that colour superconducting quark matter can occur in compact stars at values of the bag constant where ordinary quark matter would not be allowed. The resultant ``hybrid'' stars with colour superconducting quark matter interior and nuclear matter surface have masses in the range 1.3-1.6 Msolar and radii 8-11 km. Once perturbative corrections are included, quark matter can show a mass-radius relationship very similar to that of nuclear matter, and the mass of a hybrid star can reach 1.8 \Msolar.Comment: 11 pages, for proceedings of SQM 2003 conference; references added, abstract reworde

    Illuminating Dense Quark Matter

    Get PDF
    We imagine shining light on a lump of cold dense quark matter, in the CFL phase and therefore a transparent insulator. We calculate the angles of reflection and refraction, and the intensity of the reflected and refracted light. Although the only potentially observable context for this phenomenon (reflection of light from and refraction of light through an illuminated quark star) is unlikely to be realized, our calculation casts new light on the old idea that confinement makes the QCD vacuum behave as if filled with a condensate of color-magnetic monopoles.Comment: 4 pages, 1 figur

    SO(10) Cosmic Strings and SU(3) Color Cheshire Charge

    Full text link
    Certain cosmic strings that occur in GUT models such as SO(10)SO(10) can carry a magnetic flux which acts nontrivially on objects carrying SU(3)colorSU(3)_{color} quantum numbers. We show that such strings are non-Abelian Alice strings carrying nonlocalizable colored ``Cheshire" charge. We examine claims made in the literature that SO(10)SO(10) strings can have a long-range, topological Aharonov-Bohm interaction that turns quarks into leptons, and observe that such a process is impossible. We also discuss flux-flux scattering using a multi-sheeted formalism.Comment: 37 Pages, 8 Figures (available upon request) phyzzx, iassns-hep-93-6, itp-sb-93-6

    Strange Stars with a Density-Dependent Bag Parameter

    Full text link
    We have studied strange quark stars in the framework of the MIT bag model, allowing the bag parameter B to depend on the density of the medium. We have also studied the effect of Cooper pairing among quarks, on the stellar structure. Comparison of these two effects shows that the former is generally more significant. We studied the resulting equation of state of the quark matter, stellar mass-radius relation, mass-central-density relation, radius-central-density relation, and the variation of the density as a function of the distance from the centre of the star. We found that the density-dependent B allows stars with larger masses and radii, due to stiffening of the equation of state. Interestingly, certain stellar configurations are found to be possible only if B depends on the density. We have also studied the effect of variation of the superconducting gap parameter on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in Phys. Rev. (D

    Breached Pairing Superfluidity at Finite Temperature and Density

    Full text link
    A general analysis on Fermion pairing at finite temperature and density between different species with mismatched Fermi surfaces is presented. Very different from the temperature effect of BCS phase, the recently found breached pairing phase resulted from density difference of the two species lies in a region with calabash-like shape in the T−ΌT-\mu plane, and the most probable temperature for the new phase's creation is finite but not zero.Comment: 5 papes, 5 figures. Comments are welcome to [email protected]

    Neutrino Propagation In Color Superconducting Quark Matter

    Get PDF
    We calculate the neutrino mean free path in color superconducting quark matter, and employ it to study the cooling of matter via neutrino diffusion in the superconducting phase as compared to a free quark phase. The cooling process slows when quark matter undergoes a second order phase transition to a superconducting phase at the critical temperature TcT_c. Cooling subsequently accelerates as the temperature decreases below TcT_c. This will directly impact the early evolution of a newly born neutron star should its core contain quark matter. Consequently, there may be observable changes in the early neutrino emission which would provide evidence for superconductivity in hot and dense matter.Comment: 12 pages, 5 figure

    Bulk viscosity in a cold CFL superfluid

    Get PDF
    We compute one of the bulk viscosity coefficients of cold CFL quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of superfluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and remind that there are at least three bulk viscosity coefficients in these systems. We then compute the bulk viscosity coefficient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m_s. We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant to study the rotational properties of a compact star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in JCA

    Effective Gap Equation for the Inhomogeneous LOFF Superconductive Phase

    Full text link
    We present an approximate gap equation for different crystalline structures of the LOFF phase of high density QCD at T=0. This equation is derived by using an effective condensate term obtained by averaging the inhomogeneous condensate over distances of the order of the crystal lattice size. The approximation is expected to work better far off any second order phase transition. As a function of the difference of the chemical potentials of the up and down quarks, ÎŽÎŒ\delta\mu, we get that the octahedron is energetically favored from ÎŽÎŒ=Δ0/2\delta\mu=\Delta_0/\sqrt 2 to 0.95Δ00.95\Delta_0, where Δ0\Delta_0 is the gap for the homogeneous phase, while in the range 0.95Δ0−1.32Δ00.95\Delta_0-1.32\Delta_0 the face centered cube prevails. At ÎŽÎŒ=1.32Δ0\delta\mu=1.32\Delta_0 a first order phase transition to the normal phase occurs.Comment: 11 pages, 5 figure
    • 

    corecore