4 research outputs found
Bulk viscosity in a cold CFL superfluid
We compute one of the bulk viscosity coefficients of cold CFL quark matter in
the temperature regime where the contribution of mesons, quarks and gluons to
transport phenomena is Boltzmann suppressed. In that regime dissipation occurs
due to collisions of superfluid phonons, the Goldstone modes associated to the
spontaneous breaking of baryon symmetry. We first review the hydrodynamics of
relativistic superfluids, and remind that there are at least three bulk
viscosity coefficients in these systems. We then compute the bulk viscosity
coefficient associated to the normal fluid component of the superfluid. In our
analysis we use Son's effective field theory for the superfluid phonon, amended
to include scale breaking effects proportional to the square of the strange
quark mass m_s. We compute the bulk viscosity at leading order in the scale
breaking parameter, and find that it is dominated by collinear splitting and
joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T,
growing at low temperature T until the phonon fluid description stops making
sense. Our results are relevant to study the rotational properties of a compact
star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in
JCA
Bulk viscosity in 2SC quark matter
The bulk viscosity of three-flavor color-superconducting quark matter
originating from the nonleptonic process u+s u+d is computed. It is assumed
that up and down quarks form Cooper pairs while the strange quark remains
unpaired (2SC phase). A general derivation of the rate of strangeness
production is presented, involving contributions from a multitude of different
subprocesses, including subprocesses that involve different numbers of gapped
quarks as well as creation and annihilation of particles in the condensate. The
rate is then used to compute the bulk viscosity as a function of the
temperature, for an external oscillation frequency typical of a compact star
r-mode. We find that, for temperatures far below the critical temperature T_c
for 2SC pairing, the bulk viscosity of color-superconducting quark matter is
suppressed relative to that of unpaired quark matter, but for T >~ 10^(-3) T_c
the color-superconducting quark matter has a higher bulk viscosity. This is
potentially relevant for the suppression of r-mode instabilities early in the
life of a compact star.Comment: 18 pages + appendices (28 pages total), 8 figures; v3: corrected
numerical error in the plots; 2SC bulk viscosity is now larger than unpaired
bulk viscosity in a wider temperature rang
Critical temperature for kaon condensation in color-flavor locked quark matter
We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark
matter at nonzero temperature. Chiral symmetry breaking in this phase of cold
and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these
being the charged and neutral kaons K^+ and K^0. At zero temperature,
Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped,
this kaon condensed CFL phase can, for energies below the fermionic energy gap,
be described by an effective theory for the bosonic modes. We use this
effective theory to investigate the melting of the condensate: we determine the
temperature-dependent kaon masses self-consistently using the two-particle
irreducible effective action, and we compute the transition temperature for
Bose-Einstein condensation. Our results are important for studies of transport
properties of the kaon condensed CFL phase, such as bulk viscosity.Comment: 24 pages, 8 figures, v2: new section about effect of electric
neutrality on critical temperature added; references added; version to appear
in J.Phys.