4 research outputs found

    Extraction of Palladium from Spent Nuclear Fuel Reprocessing Solutions

    No full text
    New solvent systems for selective separation of palladium from nuclear wastes represent a prospective way to reduce the total waste volume and induce this metal’s extraction. For this purpose, the potential of modern green solvent room-temperature ionic liquid was assessed with diamide-type extractants based on N-heterocycles and S-donating thiodiglicolic acid. The N-donating heterocyclic extractants demonstrate structure-dependent high selectivity toward palladium in the presence of various impurity metals (such as Zr, Cs, Sr, Mo, Ce, Fe, and Cr) from spent nuclear fuel. Palladium is extracted into the organic phase quite selectively with a separation factor greater than a thousand for all extractants. Ionic liquid media are capable of selective palladium separation from platinum group metals and synergetically increase the selectivity of the extractants

    Conversion of Organic Matter of Carbonate Deposits in the Hydrothermal Fluid

    No full text
    This present paper investigates the conversion of organic matter in carbonate rocks of the Semiluksko-Mendymsky horizon Volga-Ural Basin under hydrothermal conditions with excess water in subcritical conditions at 613–653 K and 170–200 Bar. It has been found that the content of hydrocarbon extracts increases (relatively) which indicates the oil-generating potential of the studied deposits. Besides, it has been shown that organic matter undergoes oxidation reactions under hydrothermal conditions, as indicated by the presence of oxidized structures in the extracted hydrocarbons. Moreover, our results indicate that increasing the temperature and pressure of the used hydrothermal fluid leads to an increase in the content of n-alkanes C25-C30 and asphaltenes in the extracts. On the other hand, it has been found that saturated, aromatic hydrocarbons and resins content decreases at this stage. The obtained data about the geochemical parameters dependencies of the hydrocarbons obtained from the studied carbonate rock on temperature and pressure associated to hydrothermal effect show possible pathways of migration, genesis, and formation of hydrocarbon deposits

    Recovery of Uranium, Thorium, and Other Rare Metals from Eudialyte Concentrate by a Binary Extractant Based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and Methyl Trioctylammonium Nitrate

    No full text
    Eudialyte-group minerals are of scientific interest as important concentrators of rare elements (mainly Zr and REE) in agpaitic alkaline rocks and a potential source of REE, Zr, Hf, Nb, and Ta for industrial use. Extraction of uranium(VI), thorium(IV), zirconium(IV), hafnium(IV), titanium(IV), and scandium(III) by a binary extractant based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyl trioctylammonium nitrate from eudialyte breakdown solutions is studied. Extraction isotherms were obtained and exhaustive extraction was investigated. It is shown that uranium, thorium, hafnium, zirconium, scandium, and titanium are almost completely recovered in two-stage extraction by a mixture of 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyltrioctylammonium nitrate in 1,2-dichloroethane. Quantitative characteristics were compared for uranium(VI), thorium(IV), zirconium(IV), hafnium(IV), titanium(IV), and scandium(III). It was shown that the extraction efficiency of the metals by the binary extractant based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyltrioctylammonium nitrate in 1,2-dichloroethane is much higher in comparison with the commercially available tributyl phosphate

    Recovery of Uranium, Thorium, and Other Rare Metals from Eudialyte Concentrate by a Binary Extractant Based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and Methyl Trioctylammonium Nitrate

    No full text
    Eudialyte-group minerals are of scientific interest as important concentrators of rare elements (mainly Zr and REE) in agpaitic alkaline rocks and a potential source of REE, Zr, Hf, Nb, and Ta for industrial use. Extraction of uranium(VI), thorium(IV), zirconium(IV), hafnium(IV), titanium(IV), and scandium(III) by a binary extractant based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyl trioctylammonium nitrate from eudialyte breakdown solutions is studied. Extraction isotherms were obtained and exhaustive extraction was investigated. It is shown that uranium, thorium, hafnium, zirconium, scandium, and titanium are almost completely recovered in two-stage extraction by a mixture of 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyltrioctylammonium nitrate in 1,2-dichloroethane. Quantitative characteristics were compared for uranium(VI), thorium(IV), zirconium(IV), hafnium(IV), titanium(IV), and scandium(III). It was shown that the extraction efficiency of the metals by the binary extractant based on 1,5-bis[2-(hydroxyethoxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and methyltrioctylammonium nitrate in 1,2-dichloroethane is much higher in comparison with the commercially available tributyl phosphate
    corecore