55 research outputs found

    Impact of Gamma Irradiation and Kale Leaf Powder on Amino Acid and Fatty Acid Profiles of Chicken Meat under Different Storage Intervals

    Get PDF
    he present study was planned to determine the effect of kale leaf powder and gamma rays on variations in the pH, amino acid and fatty acid profiles of chicken meat at different storage intervals. Significant changes (p ≤ 0.05) in the pH, amino acid and fatty acid profiles of chicken meat following different treatments (KLP (1% and 2%) and gamma irradiation (3k Gy)) were reported at 0, 7 and 14 days of storage. The pH value of the chicken meat sample decreased with the addition of kale leaf powder, whereas the value increased following a gamma irradiation dose of 3 kGy and with the passage of time. During different storage intervals, the minimum reduction in the amino acid and fatty acid quantities in the chicken meat samples was reported after gamma irradiation treatment. However, with the addition of KLP, the amount of amino acids and fatty acids in the chicken meat samples increased. Conclusively, the pH was observed to be reduced in the meat following combined treatment (irradiation + KLP), whereas the 2% KLP treatment improved the amino acid and fatty acid profiles of the chicken samples.info:eu-repo/semantics/publishedVersio

    Pseudomonas aeruginosa inhibits quorum-sensing mechanisms of soft rot pathogen Lelliottia amnigena RCE to regulate its virulence factors and biofilm formation

    Get PDF
    The quorum-sensing (QS) cascade is responsible for the colonization and phenotypic behavior of the pathogenic organism and the regulation of diverse signal molecules. The disruption of the quorum-sensing system is an effective strategy to overcome the possibility of antibiotic resistance development in the pathogen. The quorum quenching does not kill the microbes. Instead, it hinders the expression of pathogenic traits. In the present experiment, Pseudomonas aeruginosa RKC1 was used to extract the metabolites responsible for quorum-sensing inhibition in soft rot pathogen Lelliottia amnigena RCE. During the initial screening, P. aeruginosa RKC1 was found to be most promising and inhibits violacein of Chromobacterium violaceum MTCC2656 pyocyanin, swarming-swimming motility of P. aeruginosa MTCC2297. The characterization of metabolites produced by the microbes which are responsible for quorum-sensing inhibition through GC-MS is very scarce in scientific literature. The ethyl acetate extract of P. aeruginosa RKC1 inhibits biofilm formation of L. amnigena RCE while inhibiting growth at higher concentrations. The GC-MS analysis suggested that Cyclic dipeptides (CDPs) such as Cyclo (L-prolyl-L-valine), Cyclo (Pro-Leu), and Cyclo(D-phenylalanyl-L-prolyl) were predominantly found in the ethyl acetate extract of the P. aeruginosa RKC1 (93.72%). This diketopiperazine (DKPs) exhibited quorum-sensing inhibition against the pathogen in liquid media during the active growth phase and regulated diverse metabolites of the pathogen. Moreover, the metabolites data from the clear zone around wells showed a higher concentration of DKSs (9.66%) compared to other metabolites. So far, very few reports indicate the role of DKPs or CDPs in inhibiting the quorum-sensing system in plant pathogenic bacteria. This is one such report that exploits metabolites of P. aeruginosa RKC1. The present investigation provided evidence to use quorum-sensing inhibitor metabolites, to suppress microbes' pathogenesis and thus develop an innovative strategy to overcome antibiotic resistance.Peer reviewe

    Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil

    Get PDF
    Among the biotic and abiotic stress affecting the physical, chemical, and biological properties of soil, salinity is a major threat that leads to the desertification of cultivable land throughout the world. The existence of diverse and versatile microbial populations inhabiting the nutrient-rich soil and varied soil conditions affects the soil dynamism. A normal soil constitutes 600 million bacteria belonging to about 20,000 species, which is reduced to 1 million with 5,000-8,000 species in stress conditions. Plant growth-promoting rhizobacteria (PGPR) are in symbiotic association with the plant system, which helps in combating the abiotic stress and increases the overall productivity and yield. These microorganisms are actively associated with varied cellular communication processes through quorum sensing and secondary metabolites such as the production of Indole-3-acetic acid (IAA), exopolysaccharide (EPS) siderophore, ammonia, ACC deaminase, and solubilization of phosphate. The present study focused on the isolation, identification, and characterization of the microorganisms isolated from the seacoast of Dandi, Navsari. Twelve isolates exhibited PGP traits at a high salt concentration of 15-20%. AD9 isolate identified as Bacillus halotolerans showed a higher ammonia production (88 +/- 1.73 mu g/mL) and phosphate solubilization (86 +/- 3.06 mu g/mL) at 15% salt concentration, while AD32* (Bacillus sp. clone ADCNO) gave 42.67 +/- 1.20 mu g/mL IAA production at 20% salt concentration. AD2 (Streptomyces sp. clone ADCNB) and AD26 (Achromobacter sp. clone ADCNI) showed ACC deaminase activity of 0.61 +/- 0.12 and 0.60 +/- 0.04 nM alpha-ketobutyrate/mg protein/h, respectively. AD32 (Bacillus sp. clone ADCNL) gave a high siderophore activity of 65.40 +/- 1.65%. These isolates produced salinity ameliorating traits, total antioxidant activities, and antioxidant enzymes viz. superoxide dismutase (SOD), Glutathione oxidase (GSH), and catalase (CAT). Inoculation of the multipotent isolate that produced PGP traits and salinity ameliorating metabolites promoted the plant growth and development in rice under salinity stress conditions. These results in 50% more root length, 25.00% more plant dry weight, and 41% more tillers compared to its control.Peer reviewe

    Piper caninum extract and Brevibacillus agri mixture suppresses rice leaf spot pathogen; Nigrospora oryzae and improves the production of red rice (Oryza sativa L)

    Get PDF
    Under the guise of enhancing productivity, using pesticides and artificial fertilizers in agriculture affects both the environment and living things. High chemical residues in food and the environment disrupt the health of consumers. One of the solutions that can bring about a reduction in the use of pesticides and chemicals is switching to organic fertilizers. The application of biopesticides originating from biological sources such as plant extracts and the use of microbes is gaining global acceptance. Therefore, this study aimed to obtain the best biopesticides and biostimulants that could suppress the leaf spot pathogen, Nigrospora oryzae, and increase the growth and yield of Bali red rice. The study contained four treatments, namely untreated control (F0), Piper caninum leaf extract (F1), Brevibacillus agri (F2), and fermented P. caninum leaf extract plus B. agri (F3). The treatments were arranged in a randomized complete block design, and each treatment was replicated three times. The parameters measured were the number of tillers per plant, number of leafs per plant, chlorophyll content, number of grains per panicle, grain weight, and grain yield. Furthermore, antimicrobial and antioxidants were assayed using SEM. GC-MS. At the end of the experiment, the disease index of the leaf spot wasmeasured. The results showed that F3 significantly suppressed leaf spots caused by N. oryzae compared to other treatments, including untreated control in red rice. Additionally, the F3 significantly increased the number of productive tillers, number of grains per panicle, and grain yield compared to all other treatments. The F3 enhanced the crop yield at 6.19 tons/ha, an increase of 50% compared to the untreated control. The SEM.GC- MS results showed the presence of 2.3 butanediol, tetra-decanoic acid, butanoic acid, ethyl ester, benzene propanal, 3-(1,1-dimethylethyl)-a-methyl, a-N-Normethadol in treated plants with P. canicum plus B. agri

    Integrative multi‐omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water

    Get PDF
    Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: “avoidance” by efficient sodium and chloride exclusion at the roots, and “acclimation” by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance

    Greenhouse gas emission and energy analysis of vetch (Vicia sativa L.) cultivation

    Full text link
    Background: Agricultural production accounts for a major share of global energy consumption and greenhouse gas emissions (GHG). However, the information on energy use and GHG emissions from various crops is contradictory. Climate change is expected to increase the GHG emission from different crops; therefore, selection of the crops with lower GHG emission could be helpful in reducing the emission and energy consumption. A major focus of energy policy should be on improving energy efficiency. Saving money and lowering GHG emissions are only two benefits of using energy efficiently. However, these are unknown for the vetch cultivation in Siirt province of Turkey. Methods: This study investigated energy consumption efficiency and GHG emissions of vetch (Vicia sativa L.) production under dry circumstances in Siirt province, Turkey during 2021. Seed rate was kept 120 kg/ha in the current study. The amount of fertilizer applied was 92.0 kg/ha pure phosphorus and 36.0 kg/ha pure nitrogen. To calculate the energy efficiency of vetch production in Siirt, energy inputs and energy outputs were computed. Results: The energy intake and output were 8205.02 MJ/ha and 90388.56 MJ/ha, respectively. The energy inputs were: 37.1 % diesel fuel energy, 31.2 % fertilizer energy, 21.2 % seed energy, 9.6 % equipment energy, and 0.9 % labor energy. The results revealed that energy consumption efficiency was 11.02, specific energy was 0.34 MJ/kg, energy efficiency was 2.90 kg/MJ, and net energy was 82183.54 MJ/ha in vetch production. Total GHG emissions from vetch production was 205.19 kgCO2-eq ha−1, with diesel fuel accounting for the lion's share (72.88 %). Diesel fuel was followed by the consumption of nitrogen fertilizer (26.33 %), phosphorous (0.47 %) and machinery (0.42 %). Additionally, GHG ratio was 0.009 kg CO2-eq kg−1 in vetch production. Conclusion: It is concluded that encouraging the farmers to produce vetch as an alternative to the production of conventional forage crops and rotation in fodder production will be beneficial. It will reduce GHG emissions with lesser energy consumption

    Ipomoea tricolor (Convolvulaceae) in Turkey: New occurrence record and potential spread areas under current climatic conditions

    Full text link
    Background: The invasive alien plant species exert significant economic and ecological impacts in the introduced ranges. The occurrence reports of newly introduced species and assessing their potential spread are important for halting their future spread. Methods: The presence of Ipomoea tricolor Cav. (Convolvulaceae) in Turkey is confirmed through surveys in Tokat province. The general characteristics and seed germination potential of the plant were determined, and its potential distribution areas in the country were modeled by maximum entropy model. Global habitat suitability of the species was predicted under current climatic conditions and then downscaled to Turkey. Results: The plant was first recorded on the edge of a field and in the garden of a house in Tokat province (Kat town) of Turkey. The species was transported/introduced here for ornamental purposes. Afterward, the species was detected at two more locations in the residential areas of Tokat province, grown as an ornamental plant. The model predicted that there are plenty of vacant niches with moderate habitat suitability for I. tricolor in Turkey. The Black Sea, Aegean, Mediterranean and some parts of central Anatolia regions of the country are suitable for the spread of this species. Considering the rapid spread of I. purpurea (an ornamental plant species in the same genus) in agricultural and non-agricultural areas of the country, it is predicted that I. tricolor  could spread and cause negative impacts on agro-ecosystems. Conclusions: The potential spread areas of the species should be mapped under future climatic conditions to develop early detection and rapid response system in the country. Rapid surveys should be conducted in the areas predicted as suitable to track the spread of the species and improve models’ prediction. Nonetheless, awareness should be created through citizen science to halt the spread of this species in the current distribution region of the country

    Bio-Priming with Compatible Rhizospheric Microbes Enhances Growth and Micronutrient Uptake of Red Cabbage

    Full text link
    Red cabbage is known as the millennium’s functional food, which has a lot of importance in our diet because of the health-promoting ingredients present in it. The current study investigated the synergistic relationship of rhizospheric-competent microbial agents (Trichoderma harzianum, Pseudomonas fluorescens, and Bacillus subtilis) in modulating the performance of red cabbage under the field conditions of Middle Gangetic Plains, India. Growth parameters were studied at three developmental stages, viz., pre-cupping, early head formation, and maturity. Our results suggested that the dual application of T. harzianum + P. fluorescens along with the 75% recommended dose of fertilizers (RDF) increased the number of leaves (24.6), leaf area (537.2 cm2), root length (19.8 cm), and micronutrient uptake (Fe, Mn, and Cu) by head of the crop, whereas the co-inoculation of P. fluorescens and B. subtilis along with 75% RDF enhanced plant spread (39.0 cm), earliness (95.2 days), and Zn uptake. Maximum plant height (28.7 cm) and chlorophyll (SPAD, 77.3) were recorded in 100% RDF (120:60:60 kg ha−1) and the combination of T. harzianum + B. subtilis along with 75% RDF, respectively. Interestingly, consortium (T. harzianum + P. fluorescens) bio-primed plants recorded about 14% higher root length in comparison to plants receiving sole fertilizers. The regression analysis revealed a significant relationship of Fe and Mn uptake with chlorophyll (SPAD) and between Zn uptake and the earliness of the crop. The present study indicated that seedling bio-priming with the dual consortium of efficient bio-agents is a viable strategy to lessen our dependence on chemical fertilizers for improving red cabbage production

    The Venus flytrap attracts insects by the release of volatile organic compounds

    Get PDF
    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap

    Fabrication and Experimental Analysis of Treated Snake Grass Fiber Reinforced with Polyester Composite

    Full text link
    The selection of fiber is predominant for natural fiber-reinforced polymer composite materials, which should have easy extraction and good bonding with considerable strength. In this paper, some chemical treatments were done on the fiber material to increase interfacial bonding between the snake grass fiber (Sansevieria ehrenbergii) and polyester matrix, such as alkali treatment (NaOH), potassium permanganate treatment, sodium carbonate treatment, hydrogen peroxide treatment, and calcium carbonate treatment. The chopped snake grass fiber-reinforced polymer composite material was prepared by keeping 25 wt.% of fiber and 30 mm fiber length reinforced with an unsaturated polyester resin that was cured with the help of the catalyst methyl ethyl ketone peroxide (MEPK). Cobalt naphthenate was used as an accelerator. Tribological properties were discussed for the highly potential sample with the help of a pin-on-disc wear tester, and the results were analysed by the Taguchi L9 orthogonal array. This paper exhibited the best mechanical and tribological properties among those chemical-treated fibers used in fiber-reinforced composite materials and untreated fibers used in fiber-reinforced composite materials. CaCO3 treatment provided higher tensile strength (45 MPa), impact strength (3.35 J), and hardness (27 BHN). Finally, the mechanical and tribological characterization of the samples was done with the aid of SEM (scanning electron microscope)
    corecore