17 research outputs found

    Stress, corticosteroid hormones and hippocampal synaptic function.

    No full text
    Exposure to stressful events has profound impact on hippocampus-dependent learning and memory processes. Traumatic and stressful experiences are remembered well in general, but have also been reported to suppress learning and memory processes. These bi-directional effects are, at least in part, modulated by corticosteroid hormones that are released during exposure to stressful experiences. An important question that remains to be addressed is how exactly exposure to stressful situations and elevated corticosteroid hormone levels affect learning and memory processes. Evidence is accumulating that exposure to stressful situations and elevated corticosteroid hormone levels modulates fast excitatory amino acid mediated synaptic transmission and synaptic plasticity, which are considered to underlie learning and memory processes in the hippocampus. In particular, exposure to stressful events has been reported to facilitate synaptic plasticity when delivered shortly before or after high frequency stimulation. By contrast, stressful events and elevated corticosteroid hormones suppress synaptic potentiation when stress precedes high frequency stimulation. From the mechanistic point of view, it is potentially important that exposure to stressful events and elevated corticosteroid hormone levels target key mechanisms that are involved in synaptic plasticity, i.e. AMPA receptors and NMDA receptors

    Opposite effects of glucocorticoid receptor activation on hippocampal CA1 dendritic complexity in chronically stressed and handled animals

    No full text
    Remodeling of synaptic networks is believed to contribute to synaptic plasticity and long-term memory performance, both of which are modulated by chronic stress. We here examined whether chronic stress modulates dendritic complexity of hippocampal CA1 pyramidal cells, under conditions of basal as well as elevated corticosteroid hormone levels. Slices were prepared from naĆÆve, handled or chronically stressed animals and briefly treated with vehicle or corticosterone (100 nM); neurons were visualized with a fluorescent dye injected into individual CA1 pyramidal cells. We observed that 21 days of unpredictable stress did not affect hippocampal CA1 apical or basal dendritic morphology compared with naĆÆve animals when corticosteroid levels were low. Only when slices from stressed animals were also exposed to elevated corticosteroid levels, a significant reduction in apical (but not basal) dendritic length became apparent. Unexpectedly, animals that were handled or 3 weeks showed a reduction in both apical dendritic length and number of apical branch points when compared with naĆÆve animals. Apical dendritic length and number of branch points were restored to levels found in naĆÆve animals several hours after in vitro treatment with 100 nM corticosterone. All effects of acute corticosterone administration could be prevented by the glucocorticoid receptor antagonist RU38486 given during the last 4 days of the stress or handling protocol. We conclude that brief exposure to high concentrations of corticosterone can differently affect apical dendritic structure, depending on the earlier history of the animal, a process that critically depends on involvement of the glucocorticoid receptor

    Corticosterone shifts different forms of synaptic potentiation in opposite directions

    No full text
    Calcium entering the cell via different routes, e.g.,N-methyl-D-aspartate (NMDA) receptors or voltage-dependent calcium channels (VDCCs), plays a pivotal role in hippocampal synaptic potentiation. Since corticosteroid hormones have been reported to enhance calcium influx through VDCCs, one may predict that these hormones facilitate hippocampal synaptic efficacy. Surprisingly, though, stress and corticosteroids have so far been found to reduce synaptic potentiation. Here, we addressed this apparent paradox and examined synaptic potentiation in the CA1 area of hippocampal slices from mice with low basal corticosterone levels 1-4 h after a brief in vitro administration of corticosterone. Nifedipine and APV were used to isolate NMDA receptor-mediated and VDCC-mediated long-term potentiations (LTPs), respectively. We report that corticosterone facilitates synaptic potentiation that depends on activation of VDCCs while impairing synaptic plasticity that is mediated by NMDA receptor activation. The glucocorticoid-receptor (GR) antagonist RU 38486 blocked both the effects of corticosterone. These results indicate that the net effect of corticosteroid hormones on synaptic plasticity is determined by the balance between different types of potentiation, a balance that may be region specific and depends on the experimental conditions. We speculate that these opposite effects on synaptic efficacy are involved in the bidirectional modulation of cognitive performance by corticosteroid hormones. (c) 2005 Wiley-Liss, In
    corecore