8 research outputs found
Characterization of new LXR target genes and consequences on lipid metabolism and atherosclerosis
Les récepteurs nucléaires LXRα et LXRβ sont activés par la fixation de dérivés oxygénés du cholestérol. Ils régulent l’expression de nombreux gènes appartenant au métabolisme du cholestérol et des acides gras, et jouent un rôle important dans l’inflammation et l’immunité innée. L’activation de LXR inhibe le développement de l’athérosclérose, en augmentant l’efflux de cholestérol des macrophages ainsi que le transport inverse jusqu’au foie et l’excrétion biliaire. De plus, LXR diminue la biosynthèse et la captation du cholestérol dans les tissus périphériques. Enfin, les agonistes synthétiques de LXR administrés à des souris diminuent significativement l’inflammation dans les lésions athérosclérotiques, notamment en inhibant la sécrétion de certaines cytokines inflammatoires. Néanmoins LXR régule également la lipogenèse et la synthèse d’acides gras mono-insaturés, et l’administration d’agonistes de LXR s’accompagne également d’effets indésirables liés à cette régulation, comme une accumulation dérégulée d’acides gras dans le foie et une augmentation du taux de LDLs circulantes. Plusieurs autres mécanismes restent encore à être explorés, comme la synthèse d’acides gras polyinsaturés et les conséquences sur le métabolisme cellulaire. Nos travaux identifient une nouvelle voie régulée entièrement par LXR, le métabolisme des acides gras polyinsaturés. Le récepteur nucléaire LXR régule l’ensemble des enzymes FADS1, FADS2 et ELOVL5, responsables de la synthèse d’acides gras polyinsaturés oméga-6 et oméga-3. Cette régulation s’accompagne d’une incorporation d’acide arachidonique dans les phospholipides, via la régulation de LPCAT3, ce qui prépare les macrophages à une synthèse accrue de dérivés inflammatoires issus de l’acide arachidonique, comme la Prostaglandine E2, suite à une stimulation au lipopolysaccharide. La régulation de cette voie par LXR a également un effet sur le développement de l’athérosclérose, augmentant les taux d’acides gras polyinsaturés oméga-6 et oméga-3 dans les plaques d’athérome. Nos résultats montrent donc que LXR régule la synthèse des acides gras polyinsaturés en plus des acides gras mono-insaturés et de la lipogenèse et que cette régulation a des conséquences sur le profil lipidique des macrophages in vitro et in vivo ainsi que sur leur réponse inflammatoire.The nuclear receptors LXRα and LXRβ are activated by oxygenated metabolites of cholesterol. They regulate the expression of numerous genes belonging to cholesterol and fatty acids metabolism, and play a central role in inflammation and innate immunity. LXR activation inhibits atherosclerosis development, by increasing cholesterol efflux from macrophages as well as reverse cholesterol transport and biliary excretion. In addition, LXR decreases cholesterol uptake and biosynthesis. Synthetic LXR agonists fed to mice significantly decrease inflammation in atherosclerotic lesions, by inhibiting several inflammatory cytokines. However, LXR also regulate lipogenesis and monounsaturated fatty acids synthesis, and LXR agonists supplementation is accompanied by side effects due to this regulation, such as a deregulated accumulation of fatty acids in the liver and an increase in circulating LDLs. Other mecanisms still need to be characterized, such as polyunsaturated fatty acids synthesis and the consequences on cell metabolism. Our work identify a new pathway regulated by LXR, the metabolism of polyunsaturated fatty acids. The nuclear receptor LXR regulates all enzymes responsible for omega-6 and omega-3 polyunsaturated fatty acids synthesis, FADS1, FADS2 and ELOVL5. This regulation is accompanied by an increase in arachidonic acid incorporation in phospholipids, via LPCAT3 regulation, which subsequently primes human macrophages for an increased inflammatory metabolites secretion derived from arachidonic acid, such as Protaglandin E2, following a LPS stimulation. The regulation of this pathway by LXR has an effect on atherosclerosis, increasing omega-6 and omega-3 ployunsaturated fatty acids in atheroma plaques. Our results show therefore that LXR regulates polyunsaturated fatty acids synthesis in addition to monounsaturated fatty acids and lipogenesis, and that this regulation has direct consequences on lipid profile of macrophages in vitro and in vivo as well as on their inflammatory response
Characterisation of tissues properties in « optical biopsy » field: a new non-invasive way of exploration
International audience<font face="null"><span style="font-size: 13px;">Characterisation of tissues properties in « optical biopsy » field: a new non-invasive way of exploration</span></font&g
Specific Features of Stromal Cells Isolated from the Two Layers of Subcutaneous Adipose Tissue: Roles of Their Secretion on Angiogenesis and Neurogenesis
International audienceHuman-adipose-tissue-derived mesenchymal stromal cells (AD-MSCs) are currently being tested as autologous-cell-based therapies for use in tissue healing and regeneration. Recent studies have also demonstrated that AD-MSC-derived exosomes contribute to tissue repair and peripheral nerve regeneration. Subcutaneous abdominal adipose tissue (AAT) is divided into two layers: the superficial layer (sAAT) and the deep layer (dAAT). However, it is unclear whether there are particular characteristics of each layer in terms of AD-MSC regenerative potential. Using AD-MSCs purified and characterized from three abdominoplasties, we compared their secretomes and exosome functions to identify which layer may be most suitable as a source for cell therapy. Phenotypical analysis of the AD-MSCs containing stromal vascular fraction did not reveal any difference between the two layers. The AD-MSC secretomes showed a very similar pattern of cytokine content and both layers were able to release exosomes with identical characteristics. However, compared to the secretome, the released exosomes showed better biological properties. Interestingly, dAAT exosomes appeared to be more effective on neuromodulation, whereas neither sAAT nor dAAT-derived exosomes had significant effects on endothelial function. It thus appears that AD-MSC-derived exosomes from the two abdominal adipose tissue layers possess different features for cell therapy
Scleroderma Peripheral B Lymphocytes Secrete Interleukin-6 and Transforming Growth Factor β and Activate Fibroblasts
International audienceTo study the role of B lymphocytes in systemic sclerosis (SSc)
Liver X receptor activation promotes polyunsaturated fatty acid synthesis in macrophages : relevance in the context of atherosclerosis
International audienceOBJECTIVE:Liver X receptors (LXRs) modulate cholesterol and fatty acid homeostasis as well as inflammation. This study aims to decipher the role of LXRs in the regulation of polyunsaturated fatty acid (PUFA) synthesis in macrophages in the context of atherosclerosis.APPROACH AND RESULTS:Transcriptomic analysis in human monocytes and macrophages was used to identify putative LXR target genes among enzymes involved in PUFA biosynthesis. In parallel, the consequences of LXR activation or LXR invalidation on PUFA synthesis and distribution were determined. Finally, we investigated the impact of LXR activation on PUFA metabolism in vivo in apolipoprotein E-deficient mice. mRNA levels of acyl-CoA synthase long-chain family member 3, fatty acid desaturases 1 and 2, and fatty acid elongase 5 were significantly increased in human macrophages after LXR agonist treatment, involving both direct and sterol responsive element binding protein-1-dependent mechanisms. Subsequently, pharmacological LXR agonist increased long chain PUFA synthesis and enhanced arachidonic acid content in the phospholipids of human macrophages. Increased fatty acid desaturases 1 and 2 and acyl-CoA synthase long-chain family member 3 mRNA levels as well as increased arachidonic acid to linoleic acid and docosahexaenoic acid to eicosapentaenoic acid ratios were also found in atheroma plaque and peritoneal foam cells from LXR agonist-treated mice. By contrast, murine LXR-deficient macrophages displayed reduced expression of fatty acid elongase 5, acyl-CoA synthase long-chain family member 3 and fatty acid desaturases 1, as well as decreased cellular levels of docosahexaenoic acid and arachidonic acid.CONCLUSIONS:Our results indicate that LXR activation triggers PUFA synthesis in macrophages, which results in significant alterations in the macrophage lipid composition. Moreover, we demonstrate here that LXR agonist treatment modulates PUFA metabolism in atherosclerotic arteries.© 2015 American Heart Association, Inc
Amelioration of experimental autoimmune encephalomyelitis by in vivo reprogramming of macrophages using pro-resolving factors
Abstract Background Reinstating inflammation resolution represents an innovative concept to regain inflammation control in diseases marked by chronic inflammation. While most therapeutics target inflammatory molecules and inflammatory effector cells and mediators, targeting macrophages to initiate inflammation resolution to control neuroinflammation has not yet been attempted. Resolution-phase macrophages are critical in the resolution process to regain tissue homeostasis, and are programmed through the presence and elimination of apoptotic leukocytes. Hence, inducing resolution-phase macrophages might represent an innovative therapeutic approach to control and terminate dysregulated neuroinflammation. Methods Here, we investigated if the factors released by in vitro induced resolution-phase macrophages (their secretome) are able to therapeutically reprogram macrophages to control neuroinflammation in the model of experimental autoimmune encephalomyelitis (EAE). Results We found that injection of the pro-resolutive secretome reduced demyelination and decreased inflammatory cell infiltration in the CNS, notably through the in vivo reprogramming of macrophages at the epigenetic level. Adoptive transfer experiments with in vivo or in vitro reprogrammed macrophages using such pro-resolutive secretome confirmed the stability and transferability of this acquired therapeutic activity. Conclusions Overall, our data confirm the therapeutic activity of a pro-resolution secretome in the treatment of ongoing CNS inflammation, via the epigenetic reprogramming of macrophages and open with that a new therapeutic avenue for diseases marked by neuroinflammation