4 research outputs found

    Structural characterization and interaction studies of ubiquitin-like proteins

    Get PDF
    Ubiquitin is a highly conserved protein involved in several cellular processes like protein degradation, endocytosis, signal transduction and DNA repair. The discovery of ubiquitin-like proteins (UBL) and ubiquitin-like domains (ULD) increases the number of regulation pathways where the property of the ubiquitin-fold is profitable. Autophagy is the catabolic pathway used in cells to deliver cytosolic components and dysfunctional organelles to the lysosome for degradation. MAP1LC3 proteins are ubiquitin-like proteins involved in one hand for the expansion of the autophagosome, which sequesters cytosolic substrates. In the other hand, these proteins (LC3- and GABARAP- subfamilies) bind to autophagic receptors linked to polyubiquitinated proteins aggregates. For this project, the 3D structure of the GABARAPL-1/NBR1-LIR complex was determined and confirmed that GABARAPL-1 belongs to the MAP1LC3 proteins family, structurally characterized by an ubiquitin-fold, consisting of a central beta-sheet formed by four beta-strands and two alpha-helices on one side of the beta-sheet, preceded N terminally by two alpha-helices, resulting in the formation of two hydrophobic pockets, hp1 and hp2. The autophagic receptor NBR1 interacts with GABARAPL-1 through the hp1 and hp2 with its LIR motif taking an extended beta conformation upon binding, forming an intermolecular beta-sheet with the second beta-strand of GABARAPL 1. This LC3- interacting region (LIR) consists of an Theta XX Gamma sequence preceded by acidic amino acids, with Theta and Gamma represented by any aromatic and hydrophobic residues, respectively. Interaction studies of the LIR domains of p62, Nix and NBR1 with different members of the MAP1LC3 proteins family indicate that the presence of a tryptophan in the LIR motif increases the binding affinity. Substitution to other aromatic amino acids or increasing the number of negatively charged residues at the N-terminus of the LIR motif, however, has little effect on the binding affinity due to enthalpy-entropy compensation, suggesting that effector proteins can interact with a wide variety of different sequences with similar and moderate binding affinities. Additionally to be present in proteins dealing with protein folding and degradation, ubiquitin-like domain were found protein involved in the regulation of signal transduction like TBK1, a serine/threonine kinase responsible for induction of immune response. In this second project, based on the NMR chemical shifts of the TBK1 domain contained between amino acids 302 and 383, secondary structure prediction programs (TALOS and CSI) confirmed the presence of an Ubiquitin-like domain in TBK1 by identifying one alpha-helix and four beta-strands sequentially aligned like following beta-beta-alpha-beta-beta. This alignment corresponds perfectly with the secondary structure elements of Ubiquitin and proved that TBK1_ULD belongs to the UBL protein superfamily. The similarity to ubiquitin was even bigger by the presence in addition of a small beta-strand and a short helix, which are observed as the beta 5-strand and a 310-helix in Ubiquitin, respectively. The first attempts on the 3D structure determination confirmed the Ub-fold but due to the lack of assignment in TBK1_ULD, only a structure based on ubiquitin as a model was determined. Interaction studies of TBK1_ULD with the IAD-SRR domain of IRF3 showed that both side of the molecule seems involved and that the TBK1/IRF3 interaction is more complex than a one to one binding process. Unfortunately, the instability of TBK1_ULD associated to the difficulty in the purification of IAD-SRR did not allow to further study this interaction more precisely. Finally, to overcome the difficulty encountered in NMR experiments because of low expression and/or poor solubility, an expression vector using the intrinsic property of ubiquitin was designed. Fused to proteins or peptides targets, this construct produced proteins and peptides in a larger amount than with traditional expression vectors and also with a less cost than chemical synthesis for pure labeled peptides for NMR structural studies. The presence of a hexa histidine tag was useful for the isolation and the purification of the constructs. The existence of a TEV cleavage site was created to keep the possibility of releasing the ubiquitin moiety from the expressed protein or peptide. Moreover, the ubiquitin-tag could also still be attached to the protein/peptide of interest when biophysical methods like NMR, ITC or CD spectroscopy are applied, providing the same results than for the protein/peptide moiety alone

    Nix is a selective autophagy receptor for mitochondrial clearance

    No full text
    Autophagy is the cellular homeostatic pathway that delivers large cytosolic materials for degradation in the lysosome. Recent evidence indicates that autophagy mediates selective removal of protein aggregates, organelles and microbes in cells. Yet, the specificity in targeting a particular substrate to the autophagy pathway remains poorly understood. Here, we show that the mitochondrial protein Nix is a selective autophagy receptor by binding to LC3/GABARAP proteins, ubiquitin-like modifiers that are required for the growth of autophagosomal membranes. In cultured cells, Nix recruits GABARAP-L1 to damaged mitochondria through its amino-terminal LC3-interacting region. Furthermore, ablation of the Nix:LC3/GABARAP interaction retards mitochondrial clearance in maturing murine reticulocytes. Thus, Nix functions as an autophagy receptor, which mediates mitochondrial clearance after mitochondrial damage and during erythrocyte differentiation

    Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes

    No full text
    TANK-binding kinase 1 (TBK1/NAK/T2K) and I-κB Kinase (IKK-i/IKK-ɛ) play important roles in the regulation of interferon (IFN)-inducible genes during the immune response to bacterial and viral infections. Cell stimulation with ssRNA virus, dsDNA virus or gram-negative bacteria leads to activation of TBK1 or IKK-i, which in turn phosphorylates the transcription factors, IFN-regulatory factor (IRF) 3 and IRF7, promoting their translocation in the nucleus. To understand the molecular basis of activation of TBK1, we analyzed the sequence of TBK1 and IKK-i and identified a ubiquitin-like domain (ULD) adjacent to their kinase domains. Deletion or mutations of the ULD in TBK1 or IKK-i impaired activation of respective kinases, failed to induce IRF3 phosphorylation and nuclear localization and to activate IFN-β or RANTES promoters. The importance of the ULD of TBK1 in LPS- or poly(I:C)-stimulated IFN-β production was demonstrated by reconstitution experiments in TBK1-IKK-i-deficient cells. We propose that the ULD is a regulatory component of the TBK1/IKK-i kinases involved in the control of the kinase activation, substrate presentation and downstream signaling pathways
    corecore