59 research outputs found

    Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces

    Get PDF
    In humans, the tactile perception of fine textures is mediated by skin vibrations when scanning the surface with the fingertip. These vibrations are encoded by specific mechanoreceptors, Pacinian corpuscules (PCs), located about 2 mm below the skin surface. In a recent article, we performed experiments using a biomimetic sensor which suggest that fingerprints (epidermal ridges) may play an important role in shaping the subcutaneous stress vibrations in a way which facilitates their processing by the PC channel. Here we further test this hypothesis by directly recording the modulations of the fingerpad/substrate friction force induced by scanning an actual fingertip across a textured surface. When the fingerprints are oriented perpendicular to the scanning direction, the spectrum of these modulations shows a pronounced maximum around the frequency v/lambda, where v is the scanning velocity and lambda the fingerprints period. This simple biomechanical result confirms the relevance of our previous finding for human touch.Comment: Addendum to: Scheibert J, Leurent S, Prevost A, Debr\'egeas G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 2009; 323:1503?6 3 pages, 1 figur

    Adhesive contact of model randomly rough rubber surfaces

    Full text link
    We study experimentally and theoretically the equilibrium adhesive contact between a smooth glass lens and a rough rubber surface textured with spherical microasperities with controlled height and spatial distributions. Measurements of the real contact area AA versus load PP are performed under compression by imaging the light transmitted at the microcontacts. A(P)A(P) is found to be non-linear and to strongly depend on the standard deviation of the asperity height distribution. Experimental results are discussed in the light of a discrete version of Fuller and Tabor's (FT) original model (\textit{Proceedings of the Royal Society A} \textbf{345} (1975) 327), which allows to take into account the elastic coupling arising from both microasperities interactions and curvature of the glass lens. Our experimental data on microcontact size distributions are well captured by our discrete extended model. We show that the elastic coupling arising from the lens curvature has a significant contribution to the A(P)A(P) relationship. Our discrete model also clearly shows that the adhesion-induced effect on AA remains significant even for vanishingly small pull-off forces. Last, at the local asperity length scale, our measurements show that the pressure dependence of the microcontacts density can be simply described by the original FT model

    Probing the micromechanics of a multi-contact interface at the onset of frictional sliding

    Get PDF
    Digital Image Correlation is used to study the micromechanics of a multi-contact interface formed between a rough elastomer and a smooth glass surface. The in-plane elastomer deformation is monitored during the incipient sliding regime, i.e. the transition between static and sliding contact. As the shear load is increased, an annular slip region, in coexistence with a central stick region, is found to progressively invade the contact. From the interfacial displacement field, the tangential stress field can be further computed using a numerical inversion procedure. These local mechanical measurements are found to be correctly captured by Cattaneo and Mindlin (CM)'s model. However, close comparison reveals significant discrepancies in both the displacements and stress fields that reflect the oversimplifying hypothesis underlying CM's scenario. In particular, our optical measurements allow us to exhibit an elasto-plastic like friction constitutive equation that differs from the rigid-plastic behavior assumed in CM's model. This local constitutive law, which involves a roughness-related length scale, is consistent with the model of Bureau \textit{et al.} [Proc. R. Soc. London A \textbf{459}, 2787 (2003)] derived for homogeneously loaded macroscopic multi-contact interfaces, thus extending its validity to mesoscopic scales.measurements allow for the first quantitative test of Cattaneo and Mindlin (CM) classical model of the incipient sliding of a smooth interface. Small deviations are observed and interpreted as a result of the finite compliance of the rough interface, a behavior which contrasts with Amontons' law of friction assumed to be valid locally in CM's model. We illustrate how these measurements actually provide a method for probing the rheology of the rough interface, which we find to be of the elasto-plastic type.Comment: 11 page

    Mécanique du contact rugueux et perception tactile

    Get PDF
    5 pages, 2 figuresNational audienceDans un contact entre solides rugueux, l'interface constitue la partie la plus déformable. Son comportement mécanique détermine les contraintes s'établissant dans les deux solides, ainsi que la dynamique de frottement. Deux nouvelles méthodes expérimentales, fondées respectivement sur une observation optique directe et sur l'utilisation d'un microcapteur de force MEMS, permettent de sonder la mécanique locale de ces interfaces. Le dispositif MEMS, qui est un analogue très rudimentaire de l'extrémité du doigt humain, nous a permis de proposer un rôle possible des empreintes digitales dans la transduction de l'information tactile

    Forcing and Velocity Correlations in a Vibrated Granular Monolayer

    Full text link
    The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anti-correlation is proposed with support from both experimental results and molecular dynamics simulations. Using a rough plate, velocity correlations are positive, and the velocity distribution evolves from a gaussian at very low densities to a broader distribution at high densities. These results are interpreted as a balance between stochastic forcing, interparticle collisions, and friction with the plate.Comment: 4 pages, 5 figure

    Non-equilibrium two-phase coexistence in a confined granular layer

    Full text link
    We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with square symmetry were found to coexist in steady state with a surrounding granular liquid. By analogy to equilibrium hard sphere systems, the phase behavior can be explained through entropy maximization. However, dramatic non-equilibrium effects are present, including a significant difference in the granular temperatures of the two phases.Comment: 4 pages, 3 figures, RevTex4 forma
    corecore