85 research outputs found

    Connecting massive galaxies to dark matter halos in BOSS - I. Is galaxy color a stochastic process in high-mass halos?

    Get PDF
    We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) "CMASS" sample at z0.5z\sim0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogs which include selection effects, reproduce the overall SMF, the projected two-point correlation function wpw_{\rm p}, the CMASS dn/dzdn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of "age matching" and show that these effects are markedly different compared to the ones explored by Hearin et al. (2013) at lower stellar masses. We construct two models, one in which galaxy color is stochastic ("AbM" model) as well as a model which contains assembly bias effects ("AgM" model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colors are not a stochastic process in high-mass halos. Our results suggest that the colors of galaxies in high-mass halos are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.Comment: 22 pages. Appendix. B added. Matches the version accepted by MNRAS. Mock galaxy catalog and HOD table are available at http://www.massivegalaxies.co

    Separating two tightly linked species-defining phenotypes in Bactrocera with hybrid recombinant analysis

    Get PDF
    Background: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B. neohumeralis. We have examined the genetic relationship between the two characters in hybrids, backcrosses and multigeneration hybrid progeny. Results: Our analysis of the mating time of the parental species revealed that while B. tryoni mate exclusively at dusk, B. neohumeralis females pair with B. neohumeralis males during the day and with B. tryoni males at dusk. We found considerable variance in mating time and callus colour among hybrid backcross individuals of both sexes but there was a strong although not invariant trend for callus colour to co-segregate with mating time in both sexes. To genetically separate these two phenotypes we allowed the interspecific F1 hybrids to propagate for 25 generations (F25) without selection for mating time or callus colour, finding that the advanced hybrid population had moved towards B. tryoni phenotypes for both traits. Selection for day mating in replicate lines at F25 resulted in significant phenotypic shifts in both traits towards B. neohumeralis phenotypes in F26. However, we were unable to completely recover the mating time profile of B. neohumeralis and relaxation of selection for day mating led to a shift back towards dusk mating, but not yellow callus colour, by F35. Conclusion: We conclude that the inheritance of the two major species-defining traits is separable but tightly linked and involves more than one gene in each case. It also appears that laboratory conditions select for the B. tryoni phenotypes for mating time. We discuss our findings in relation to speciation theory and the likely effects of domestication during the generation of mass release strains for sterile insect control programmes

    The C4 Clustering Algorithm: Clusters of Galaxies in the Sloan Digital Sky Survey

    Get PDF
    We present the "C4 Cluster Catalog", a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster--finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects which plagued previous optical clusters selection. The present C4 catalog covers ~2600 square degrees of sky with groups containing 10 members to massive clusters having over 200 cluster members with redshifts. We provide cluster properties like sky location, mean redshift, galaxy membership, summed r--band optical luminosity (L_r), velocity dispersion, and measures of substructure. We use new mock galaxy catalogs to investigate the sensitivity to the various algorithm parameters, as well as to quantify purity and completeness. These mock catalogs indicate that the C4 catalog is ~90% complete and 95% pure above M_200 = 1x10^14 solar masses and within 0.03 <=z <= 0.12. The C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 <= z <= 0.12. We show that the L_r of a cluster is a more robust estimator of the halo mass (M_200) than the line-of-sight velocity dispersion or the richness of the cluster. L_r. The final SDSS data will provide ~2500 C4 clusters and will represent one of the largest and most homogeneous samples of local clusters.Comment: 32 pages of figures and text accepted in AJ. Electronic version with additional tables, links, and figures is available at http://www.ctio.noao.edu/~chrism/c

    SDSS-IV MaNGA: the inner density slopes of nearby galaxies

    Get PDF
    We derive the mass-weighted total density slopes within the effective (half-light) radius, γ′, for more than 2000 nearby galaxies from the SDSS-IV (Sloan Digital Sky Survey IV) MaNGA survey using Jeans-anisotropic-models applied to integral field unit observations. Our galaxies span a wide range of the stellar mass (109 M⊙ 100 km s−1, the density slope has a mean value 〈γ′〉 = 2.24 and a dispersion σγ = 0.22, almost independent of velocity dispersion, consistent with previous lensing and stellar dynamical analysis. We also quantitatively confirm with high accuracy a turnover in the γ′–σv relation is present at σ ∼ 100 km s−1, below which the density slope decreases rapidly with σv, consistent with the results reported by previous analysis of ATLAS3D survey. Our analysis shows that a large fraction of dwarf galaxies (below M* = 1010 M⊙) have total density slopes shallower than 1, which implies that they may reside in cold dark matter haloes with shallow density slopes. We compare our results with that of galaxies in hydrodynamical simulations of EAGLE, Illustris, and IllustrisTNG projects, and find all simulations predict shallower density slopes for massive galaxies with high σv. Finally, we explore the dependence of γ′ on the positions of galaxies in haloes, namely centrals versus satellites, and find that for the same velocity dispersion, the amplitude of γ′ is higher for satellite galaxies by about 0.1

    SDSS-III Baryon Oscillation Spectroscopic Survey data release 12 : galaxy target selection and large-scale structure catalogues

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated mksample, is released with this paper.Publisher PDFPeer reviewe

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    First Measurement of the Cross-Correlation of CMB Lensing and Galaxy Lensing

    Get PDF
    We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 3.2, which corresponds to a 16% constraint on the amplitude of density fluctuations at redshifts ~ 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements

    Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr

    Next generation transcriptomes for next generation genomes using est2assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decreasing costs of capillary-based Sanger sequencing and next generation technologies, such as 454 pyrosequencing, have prompted an explosion of transcriptome projects in non-model species, where even shallow sequencing of transcriptomes can now be used to examine a range of research questions. This rapid growth in data has outstripped the ability of researchers working on non-model species to analyze and mine transcriptome data efficiently.</p> <p>Results</p> <p>Here we present a semi-automated platform '<it>est2assembly</it>' that processes raw sequence data from Sanger or 454 sequencing into a hybrid <it>de-novo </it>assembly, annotates it and produces GMOD compatible output, including a SeqFeature database suitable for GBrowse. Users are able to parameterize assembler variables, judge assembly quality and determine the optimal assembly for their specific needs. We used <it>est2assembly </it>to process <it>Drosophila </it>and <it>Bicyclus </it>public Sanger EST data and then compared them to published 454 data as well as eight new insect transcriptome collections.</p> <p>Conclusions</p> <p>Analysis of such a wide variety of data allows us to understand how these new technologies can assist EST project design. We determine that assembler parameterization is as essential as standardized methods to judge the output of ESTs projects. Further, even shallow sequencing using 454 produces sufficient data to be of wide use to the community. <it>est2assembly </it>is an important tool to assist manual curation for gene models, an important resource in their own right but especially for species which are due to acquire a genome project using Next Generation Sequencing.</p
    corecore