4 research outputs found

    Telomeres and Telomerase in the Control of Stem Cells

    No full text
    Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed

    Exploring Dynamic Metabolome of the HepG2 Cell Line: Rise and Fall

    No full text
    Both biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days. Post-processing of obtained data revealed substantial changes in relative abundances of 110 metabolites among HepG2 samples under investigation. Our findings have implications for interpreting metabolomic results obtained from immortal cells, especially in longitudinal studies. There are still plenty of unanswered questions regarding metabolomics variability and many potential areas for future targeted and panoramic research. However, we suggest that the metabolome of cell lines is unstable and may undergo significant transformation over time, even if the culture conditions remain the same. Considering metabolomics variability on a relatively long-term basis, careful experimentation with particular attention to control samples is required to ensure reproducibility and relevance of the research results when testing both fundamentally and practically significant hypotheses

    Chlorin e6 embedded in phospholipid nanoparticles equipped with specific peptides: Interaction with tumor cells with different aminopeptidase N expression

    No full text
    A promising direction in Biopharmaceuticals is the development of specific peptide-based systems to improve drug delivery. This approach may increase tumor specificity and drug penetration into the target cell. Similar systems have been designed for several antitumor drugs. However, for photodynamic therapy drugs, such studies are not yet enough. Previously, we have developed a method of inclusion of chlorin e6 (Ce6), a photosensitizer used in photodynamic therapy, in phospholipid nanoparticles with a diameter of up to 30 nm, and reported an increase in its effectiveness in the experiments in vivo. In this work, we propose to modify a previously developed delivery system for Ce6 by the addition of cell-penetrating (R7) and/or targeting NGR peptides. The interaction of the compositions developed with HepG2 and MCF-7 tumor cells is shown. The expression of CD13 protein with affinity to NGR on the surface of these cells has been studied using flow cytometry. The expression of this protein on the HepG2 cells and its absence on MCF-7 was demonstrated. After incubation of tumor cells with the resulting Ce6 compositions, we evaluated the cellular accumulation, photoinduced, and dark cytotoxicity of the drugs. After irradiation, the highest level of cytotoxicity was observed when R7 peptide was added to the system, either alone or in combination with NGR. In addition to R7, the NGR-motif peptide increased the internalization of Ce6 in HepG2 cells without affecting its photodynamic activity. In this work we also discuss possible mechanisms of action of the cell-penetrating peptide when attached to phospholipid nanoparticles

    TRIM28 Is a Novel Regulator of CD133 Expression Associated with Cancer Stem Cell Phenotype

    Get PDF
    CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines. Despite a substantial difference in the proliferative activities of cell populations with different levels of CD133 expression, transcriptomic and proteomic profiling revealed only minor distinctions between them. Nonetheless, a further in silico assessment of the differentially expressed transcripts and proteins revealed 16 proteins that could be involved in the regulation of CD133 expression; these were assigned ranks reflecting the apparent extent of their involvement. Among them, the TRIM28 transcription factor had the highest rank. The prominent role of TRIM28 in CD133 expression modulation was confirmed experimentally in the Caco2 cell line clones: the knockout, though not the knockdown, of the TRIM28 gene downregulated CD133. These results for the first time highlight an important role of the TRIM28 transcription factor in the regulation of CD133-associated cancer cell heterogeneity
    corecore