504 research outputs found

    Worldline Superfield Actions for N=2 Superparticles

    Get PDF
    We propose doubly supersymmetric actions in terms of n=2(D-2) worldline superfields for N=2 superparticles in D=3,4 and Type IIA D=6 superspaces. These actions are obtained by dimensional reduction of superfield actions for N=1 superparticles in D=4,6 and 10, respectively. We show that in all these models geometrodynamical constraints on target superspace coordinates do not put the theory on the mass shell, so the actions constructed consistently describe the dynamics of the corresponding N=2 superparticles. We also find that in contrast to the IIA D=6 superparticle a chiral IIB D=6 superparticle, which is not obtainable by dimensional reduction from N=1, D=10, is described by superfield constraints which produce dynamical equations. This implies that for the IIB D=6 superparticle the doubly supersymmetric action does not exist in the conventional form.Comment: Latex, 20 pp. Minor corrections, acknowledgements adde

    Observation of robust polarization squeezing via the Kerr nonlinearity in an optical fibre

    Full text link
    Squeezed light is one of the resources of photonic quantum technology. Among the various nonlinear interactions capable of generating squeezing, the optical Kerr effect is particularly easy-to-use. A popular venue is to generate polarization squeezing, which is a special self-referencing variant of two-mode squeezing. To date, polarization squeezing generation setups have been very sensitive to fluctuations of external factors and have required careful tuning. In this work, we report on a development of a new all-fibre setup for polarization squeezing generation. The setup consists of passive elements only and is simple, robust, and stable. We obtained more than 5 dB of directly measured squeezing over long periods of time without any need for adjustments. Thus, the new scheme provides a robust and easy to set up way of obtaining squeezed light applicable to different applications. We investigate the impact of pulse duration and pulse power on the degree of squeezing

    Quantum-enhanced interferometer using Kerr squeezing

    Get PDF
    ©2023 the author(s). Ministry of Science and Higher Education of the Russian Federation (dx.doi.org/10.13039/501100003443) (Megagrant No. 075-15-2021-633); Russian Foundation for Basic Research (dx.doi.org/10.13039/501100002261) (19-29-11032); Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (dx.doi.org/10.13039/501100012708), Ministerio de Ciencia e Innovación https://dx.doi.org/10.13039/501100004837) (Grant No. PID2021-127781NB-I00).One of the prime applications of squeezed light is enhancing the sensitivity of an interferometer below the quantum shot-noise limit, but so far, no such experimental demonstration was reported when using the optical Kerr effect. In prior setups involving Kerr-squeezed light, the role of the interferometer was merely to characterize the noise pattern. The lack of such a demonstration was largely due to the cumbersome tilting of the squeezed ellipse in phase space. Here, we present the first experimental observation of phase-sensitivity enhancement in an interferometer using Kerr squeezing.Depto. de ÓpticaFac. de Ciencias FísicasTRUEMinisterio de Ciencia e Innovación (MICINN)pu

    Formation of Amyloid-Like Fibrils by Y-Box Binding Protein 1 (YB-1) Is Mediated by Its Cold Shock Domain and Modulated by Disordered Terminal Domains

    Get PDF
    YB-1, a multifunctional DNA- and RNA-binding nucleocytoplasmic protein, is involved in the majority of DNA- and mRNA-dependent events in the cell. It consists of three structurally different domains: its central cold shock domain has the structure of a β-barrel, while the flanking domains are predicted to be intrinsically disordered. Recently, we showed that YB-1 is capable of forming elongated fibrils under high ionic strength conditions. Here we report that it is the cold shock domain that is responsible for formation of YB-1 fibrils, while the terminal domains differentially modulate this process depending on salt conditions. We demonstrate that YB-1 fibrils have amyloid-like features, including affinity for specific dyes and a typical X-ray diffraction pattern, and that in contrast to most of amyloids, they disassemble under nearly physiological conditions

    Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    Get PDF
    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance

    Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    Get PDF
    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%
    corecore