5 research outputs found
ΠΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ΅Π»ΡΡΠΊΠΈΡ ΠΊΡΡΠΎΡΡΠΎΠ² Π² Π³Π»ΡΠ±ΠΈΠ½Π½ΡΡ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡΡ Π³. Π‘ΠΎΡΠΈ
ΠΠΎΡΠΎΠ΄-ΠΊΡΡΠΎΡΡ Π‘ΠΎΡΠΈ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΠΏΡΠΈΠ±ΡΠ΅ΠΆΠ½ΡΠ΅ ΠΈ Π³ΠΎΡΠ½ΡΠ΅ ΠΊΡΡΠΎΡΡΠ½ΠΎ-ΡΡΡΠΈΡΡΡΠΊΠΈΠ΅ ΠΊΠ»Π°ΡΡΠ΅ΡΡ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ Π² ΠΈΠ½Π΄ΡΡΡΡΠΈΡ ΡΡΡΠΈΠ·ΠΌΠ° Π³ΠΎΡΠΎΠ΄Π° ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎ-ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ΅ΡΡΡΡΠΎΠ² ΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΊΡΠ»ΡΡΡΡΠ½ΠΎΠ³ΠΎ Π½Π°ΡΠ»Π΅Π΄ΠΈΡ Π΅ΡΠ΅ Π½Π΅ ΠΎΡΠ²ΠΎΠ΅Π½Π½ΡΡ
Π³Π»ΡΠ±ΠΈΠ½Π½ΡΡ
Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎΡΠ½ΡΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ, ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΡΠ±ΡΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅Π»ΡΡΠΊΠΎΡ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠ°Π΄Π°ΡΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π°ΡΡΠ½ΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΡΡΠ»ΠΊΠΈ Π΄Π»Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠ΅, ΡΠΏΡΠ°Π²Π»Π΅Π½ΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ: Π½Π΅ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ°ΡΡΡΠ° ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΎΠ½Π½ΡΠΌ Π·Π°Π΄Π°ΡΠ°ΠΌ ΠΊΡΡΠΎΡΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π³. Π‘ΠΎΡΠΈ. ΠΠ»Ρ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π°Π³ΡΠ°ΡΠ½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΡΡΡΠΈΠ·ΠΌΠ° ΠΈ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΈ Π² Π³Π»ΡΠ±ΠΈΠ½Π½ΡΡ
Π·ΠΎΠ½Π°Ρ
Π³ΠΎΡΠΎΠ΄Π°, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Π»Π΅ΡΠ΅Π±Π½ΠΎ-ΠΎΠ·Π΄ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΠ΅Π»ΡΡΠΊΠΈΠΉ, ΡΡΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ Π½Π°ΡΡΠ½ΠΎ-ΠΏΠΎΠ·Π½Π°Π²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΡΡΠΈΠ·ΠΌ. Π‘ΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΡΠΈΠ·ΠΌΠ° ΠΈ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΈ Π½Π° ΡΠ΅Π»ΡΡΠΊΠΎΠΉ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ ΠΊΡΡΠΎΡΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡ ΡΠΎΡΡ Π·Π°Π½ΡΡΠΎΡΡΠΈ ΠΈ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΠ΅Π»ΡΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π² ΡΠ²ΡΠ·ΠΈ Ρ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΄Π΅Π»Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΠΆΠΈΠ·Π½ΠΈ ΠΌΠ΅ΡΡΠ½ΠΎΠ³ΠΎ Π°Π²ΡΠΎΡ
ΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΡΡΠΎΡΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π±Π°Π»ΡΠ½Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΡΡΡΡ, ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ Π»Π΅ΡΠ΅Π±Π½ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΊΡΠ»ΡΡΡΡΠ½ΠΎΠ΅ Π½Π°ΡΠ»Π΅Π΄ΠΈΠ΅, ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ Π»Π°Π½Π΄ΡΠ°ΡΡΡ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΡΠ±ΡΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π° Π² ΡΡΡΠΈΡΡΡΠΊΠΈΡ
ΡΠ΅Π»ΡΡ
. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΡΡΠΈΠ·ΠΌΠ° Π½Π° ΠΊΡΡΠΎΡΡΠ΅, ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡ ΠΈ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°ΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΡΡΠΎΡΡΠΎΠ² ΠΈ ΡΡΡΠΈΡΡΡΠΊΠΈΡ
Π°Π³ΡΠΎΠ΄Π΅ΡΡΠΈΠ½Π°ΡΠΈΠΉ. ΠΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠ΅ΡΡΡΡΠΎΠ² ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ Π² ΡΠ°ΠΊΡΠΎΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠΈΡΡΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠ΅Π³ΠΎ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠ΅Π½Π½ΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ
ΠΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ΅Π»ΡΡΠΊΠΈΡ ΠΊΡΡΠΎΡΡΠΎΠ² Π² Π³Π»ΡΠ±ΠΈΠ½Π½ΡΡ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡΡ Π³. Π‘ΠΎΡΠΈ
ΠΠΎΡΠΎΠ΄-ΠΊΡΡΠΎΡΡ Π‘ΠΎΡΠΈ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΠΏΡΠΈΠ±ΡΠ΅ΠΆΠ½ΡΠ΅ ΠΈ Π³ΠΎΡΠ½ΡΠ΅ ΠΊΡΡΠΎΡΡΠ½ΠΎ-ΡΡΡΠΈΡΡΡΠΊΠΈΠ΅ ΠΊΠ»Π°ΡΡΠ΅ΡΡ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ Π² ΠΈΠ½Π΄ΡΡΡΡΠΈΡ ΡΡΡΠΈΠ·ΠΌΠ° Π³ΠΎΡΠΎΠ΄Π° ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎ-ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ΅ΡΡΡΡΠΎΠ² ΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΊΡΠ»ΡΡΡΡΠ½ΠΎΠ³ΠΎ Π½Π°ΡΠ»Π΅Π΄ΠΈΡ Π΅ΡΠ΅ Π½Π΅ ΠΎΡΠ²ΠΎΠ΅Π½Π½ΡΡ
Π³Π»ΡΠ±ΠΈΠ½Π½ΡΡ
Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎΡΠ½ΡΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ, ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΡΠ±ΡΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅Π»ΡΡΠΊΠΎΡ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠ°Π΄Π°ΡΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π°ΡΡΠ½ΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΡΡΠ»ΠΊΠΈ Π΄Π»Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠ΅, ΡΠΏΡΠ°Π²Π»Π΅Π½ΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ: Π½Π΅ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ°ΡΡΡΠ° ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΎΠ½Π½ΡΠΌ Π·Π°Π΄Π°ΡΠ°ΠΌ ΠΊΡΡΠΎΡΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π³. Π‘ΠΎΡΠΈ. ΠΠ»Ρ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π°Π³ΡΠ°ΡΠ½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΡΡΡΠΈΠ·ΠΌΠ° ΠΈ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΈ Π² Π³Π»ΡΠ±ΠΈΠ½Π½ΡΡ
Π·ΠΎΠ½Π°Ρ
Π³ΠΎΡΠΎΠ΄Π°, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Π»Π΅ΡΠ΅Π±Π½ΠΎ-ΠΎΠ·Π΄ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΠ΅Π»ΡΡΠΊΠΈΠΉ, ΡΡΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ Π½Π°ΡΡΠ½ΠΎ-ΠΏΠΎΠ·Π½Π°Π²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΡΡΠΈΠ·ΠΌ. Π‘ΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΡΠΈΠ·ΠΌΠ° ΠΈ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΈ Π½Π° ΡΠ΅Π»ΡΡΠΊΠΎΠΉ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ ΠΊΡΡΠΎΡΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡ ΡΠΎΡΡ Π·Π°Π½ΡΡΠΎΡΡΠΈ ΠΈ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΠ΅Π»ΡΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π² ΡΠ²ΡΠ·ΠΈ Ρ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ΅Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΄Π΅Π»Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΠΆΠΈΠ·Π½ΠΈ ΠΌΠ΅ΡΡΠ½ΠΎΠ³ΠΎ Π°Π²ΡΠΎΡ
ΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΡΡΠΎΡΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π±Π°Π»ΡΠ½Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΡΡΡΡ, ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ Π»Π΅ΡΠ΅Π±Π½ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΊΡΠ»ΡΡΡΡΠ½ΠΎΠ΅ Π½Π°ΡΠ»Π΅Π΄ΠΈΠ΅, ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ Π»Π°Π½Π΄ΡΠ°ΡΡΡ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΡΠ±ΡΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π° Π² ΡΡΡΠΈΡΡΡΠΊΠΈΡ
ΡΠ΅Π»ΡΡ
. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΡΡΠΈΠ·ΠΌΠ° Π½Π° ΠΊΡΡΠΎΡΡΠ΅, ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡ ΠΈ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°ΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΡΡΠΎΡΡΠΎΠ² ΠΈ ΡΡΡΠΈΡΡΡΠΊΠΈΡ
Π°Π³ΡΠΎΠ΄Π΅ΡΡΠΈΠ½Π°ΡΠΈΠΉ. ΠΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠ΅ΡΡΡΡΠΎΠ² ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ Π² ΡΠ°ΠΊΡΠΎΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠΈΡΡΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠ΅Π³ΠΎ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠ΅Π½Π½ΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ
Associations between SNPs and vegetation indices: unraveling molecular insights for enhanced cultivation of tea plant (Camellia sinensis (L.) O. Kuntze)
Background Breeding programs for nutrient-efficient tea plant varieties could be advanced by the combination of genotyping and phenotyping technologies. This study was aimed to search functional SNPs in key genes related to the nitrogen-assimilation in the collection of tea plant Camellia sinensis (L.) Kuntze. In addition, the objective of this study was to reveal efficient vegetation indices for phenotyping of nitrogen deficiency response in tea collection. Methods The study was conducted on the tea plant collection of Camellia sinensis (L.) Kuntze of Western Caucasus grown without nitrogen fertilizers. Phenotypic data was collected by measuring the spectral reflectance of leaves in the 350β1100 nm range calculated as vegetation indices by the portable hyperspectral spectrometer Ci710s. Single nucleotide polymorphisms were identified in 30 key genes related to nitrogen assimilation and tea quality. For this, pooled amplicon sequencing, SNPs annotation and effect prediction with SnpEFF tool were used. Further, a linear regression model was applied to reveal associations between the functional SNPs and the efficient vegetation indices. Results PCA and regression analysis revealed significant vegetation indices with high R2 values (more than 0.5) and the most reliable indices to select ND-tolerant genotypes were established: ZMI, CNDVI, RENDVI, VREI1, GM2, GM1, PRI, and Ctr2, VREI3, VREI2. The largest SNPs frequency was observed in several genes, namely F3β5βHb, UFGTa, UFGTb, 4Cl, and AMT1.2. SNPs in NRT2.4, PIP, AlaDC, DFRa, and GS1.2 were inherent in ND-susceptible genotypes. Additionally, SNPs in AlaAT1, MYB4, and WRKY57, were led to alterations in protein structure and were observed in ND-susceptible tea genotypes. Associations were revealed between flavanol reflectance index (FRI) and SNPs in ASNb and PIP, that change the amino acids. In addition, two SNPs in 4Cl were associated with water band index (WBI). Conclusions The results will be useful to identify tolerant and susceptible tea genotypes under nitrogen deficiency. Revealed missense SNPs and associations with vegetation indices improve our understanding of nitrogen effect on tea quality. The findings in our study would provide new insights into the genetic basis of tea quality variation under the N-deficiency and facilitate the identification of elite genes to enhance tea quality
Population Analysis of <i>Diospyros lotus</i> in the Northwestern Caucasus Based on Leaf Morphology and Multilocus DNA Markers
Diospyros lotus is the one of the most frost-tolerant species in the Diospyros genera, used as a rootstock for colder regions. Natural populations of D. lotus have a fragmented character of distribution in the Northwestern Caucasus, one of the coldest regions of Diospyros cultivation. To predict the behavior of D. lotus populations in an extreme environment, it is necessary to investigate the intraspecific genetic diversity and phenotypic variability of populations in the colder regions. In this study, we analyzed five geographically distant populations of D. lotus according to 33 morphological leaf traits, and the most informative traits were established, namely, leaf length, leaf width, leaf index (leaf to length ratio) and the length of the fourth veins. Additionally, we evaluated the intraspecific genetic diversity of D. lotus using ISSR and SCoT markers and proposed a new parameter for the evaluation of genetic polymorphism among populations, in order to eliminate the effect of sample number. This new parameter is the relative genetic polymorphism, which is the ratio of polymorphism to the number of samples. Based on morphological and genetic data, the northernmost population from Shkhafit was phenotypically and genetically distant from the other populations. The correspondence between several morphological traits (leaf width, leaf length and first to fifth right vein angles) and several marker bands (SCoT5, SCoT7, SCoT30: 800β1500 bp; ISSR13, ISSR14, ISSR880: 500β1000 bp) were observed for the Shkhafit population. Unique SCoT and ISSR fragments can be used as markers for breeding purposes. The results provide a better understanding of adaptive mechanisms in D. lotus in extreme environments and will be important for the further expansion of the cultivation area for persimmon in colder regions
Population Analysis of Diospyros lotus in the Northwestern Caucasus Based on Leaf Morphology and Multilocus DNA Markers
Diospyros lotus is the one of the most frost-tolerant species in the Diospyros genera, used as a rootstock for colder regions. Natural populations of D. lotus have a fragmented character of distribution in the Northwestern Caucasus, one of the coldest regions of Diospyros cultivation. To predict the behavior of D. lotus populations in an extreme environment, it is necessary to investigate the intraspecific genetic diversity and phenotypic variability of populations in the colder regions. In this study, we analyzed five geographically distant populations of D. lotus according to 33 morphological leaf traits, and the most informative traits were established, namely, leaf length, leaf width, leaf index (leaf to length ratio) and the length of the fourth veins. Additionally, we evaluated the intraspecific genetic diversity of D. lotus using ISSR and SCoT markers and proposed a new parameter for the evaluation of genetic polymorphism among populations, in order to eliminate the effect of sample number. This new parameter is the relative genetic polymorphism, which is the ratio of polymorphism to the number of samples. Based on morphological and genetic data, the northernmost population from Shkhafit was phenotypically and genetically distant from the other populations. The correspondence between several morphological traits (leaf width, leaf length and first to fifth right vein angles) and several marker bands (SCoT5, SCoT7, SCoT30: 800β1500 bp; ISSR13, ISSR14, ISSR880: 500β1000 bp) were observed for the Shkhafit population. Unique SCoT and ISSR fragments can be used as markers for breeding purposes. The results provide a better understanding of adaptive mechanisms in D. lotus in extreme environments and will be important for the further expansion of the cultivation area for persimmon in colder regions