5 research outputs found

    Application of the Impedance Measurement Method to Evaluate the Results of Winter Grafting of Pear Cuttings Using Cold Plasma

    No full text
    Electroimpedance spectroscopy technology can be used to accelerate the healing of complete trees and estimate the plant condition after grafting. This approach will allow sorting out low-vigor plants at the early stages of their development to save time and resources. Still, in some cases, the use of electrical impedance spectroscopy can be difficult due to the complexity of the equipment and special measurement conditions. In this paper, we attempt to overcome this limitation by suggesting a compact device developed in-house that is usable even in the field. Pear (Pyrus communis L.) Otradnenskaya was used as the object of this study. We assessed the treatment effect of the scion–rootstock interface with cold atmospheric plasma (CAP) and plasma-treated solution (PTS) on the survival of the grafts. The dependence of the impedance of the complete grafted tree on the signal frequency and the length of the measuring section was analyzed. It is shown that the treatment of the scion and rootstock with CAP and PTS promotes the fusion of scion and rootstock. The impedance value in the control was on average 24–35% higher than in plants treated with CAP and PTS, which indicates a better healing process of the grafting site. This can be an indication of better quality of the planting material which can be obtained much earlier than with the conventional approach (monitoring the plants in a nursery)

    Application of the Impedance Measurement Method to Evaluate the Results of Winter Grafting of Pear Cuttings Using Cold Plasma

    No full text
    Electroimpedance spectroscopy technology can be used to accelerate the healing of complete trees and estimate the plant condition after grafting. This approach will allow sorting out low-vigor plants at the early stages of their development to save time and resources. Still, in some cases, the use of electrical impedance spectroscopy can be difficult due to the complexity of the equipment and special measurement conditions. In this paper, we attempt to overcome this limitation by suggesting a compact device developed in-house that is usable even in the field. Pear (Pyrus communis L.) Otradnenskaya was used as the object of this study. We assessed the treatment effect of the scion–rootstock interface with cold atmospheric plasma (CAP) and plasma-treated solution (PTS) on the survival of the grafts. The dependence of the impedance of the complete grafted tree on the signal frequency and the length of the measuring section was analyzed. It is shown that the treatment of the scion and rootstock with CAP and PTS promotes the fusion of scion and rootstock. The impedance value in the control was on average 24–35% higher than in plants treated with CAP and PTS, which indicates a better healing process of the grafting site. This can be an indication of better quality of the planting material which can be obtained much earlier than with the conventional approach (monitoring the plants in a nursery)

    Testing of Polymer Composites for Manufacturing of Sprayer Nozzles

    No full text
    Wear is the leading cause of nozzle failure. The durability of the nozzle is affected by the material it is made from. Traditional materials are ceramics, stainless steel, brass, and polymers. One of the possible ways to improve the wear resistance of polymer nozzles is through the incorporation of dispersed fillers into them. This paper presents the results of testing polymer composites for their chemical resistance to pesticides, examining the effects of different types and amounts of fillers on the chemical and abrasion resistance. When silicon carbide was used as a filler, the strength increased by 30.2%. The experiments on chemical resistance to pesticides revealed that the nature, shape, and volume content of filler particles do not significantly affect the resistance of the compounds obtained. Tests on hydro-abrasive wear have shown that graphite and silicon carbide are effective fillers capable of reducing wear by up to 7.5 times. Based on previous research, it is recommended to use a composite compound with 15% volume of silicon carbide for nozzle manufacturing

    Enhancement of the Plant Grafting Technique with Dielectric Barrier Discharge Cold Atmospheric Plasma and Plasma-Treated Solution

    No full text
    A garden plant grafting technique enhanced by cold plasma (CAP) and plasma-treated solutions (PTS) is described for the first time. It has been shown that CAP created by a dielectric barrier discharge (DBD) and PTS makes it possible to increase the growth of Pyrus communis L. by 35–44%, and the diameter of the root collar by 10–28%. In this case, the electrical resistivity of the graft decreased by 20–48%, which indicated the formation of a more developed vascular system at the rootstock–scion interface. The characteristics of DBD CAP and PTS are described in detail
    corecore