4 research outputs found

    Dimensional Transformation of Percolation Structure in Mixed-Matrix Membranes (MMMs)

    No full text
    A large number of studies of mixed-matrix membranes (MMMs) have confirmed the possibility of obtaining new materials with unique transport properties, including for solving specific problems in the separation of mixtures of liquids and gases. The choice of particles with a given affinity for the matrix and separable components allows researchers to adjust the selective properties of MMMs in a wide range, which changes the properties of MMMs in a wide range. However, even within the framework of the most complex percolation mechanism of the formation of the MMM structure, it is possible to explain only some of the observed effects. In particular, questions about the required particle concentration and fluctuation of properties in various MMM samples are still the subject of research. The results of the numerical modeling of such structures presented in this paper determined the possible causes of the observed deviations of the experimental results, for example, particle size dispersion, agglomeration, and interaction with the matrix. According to our research, the key factor that qualitatively changes the parameters of percolation structures is the ratio of the geometric dimensions of the system. We have confirmed in a wide range a significant change in the conditions of cluster formation and its power at different particle diameters and lengths (traditional parameters in percolation studies). But in our work, we additionally studied the effect on the cluster parameters of the interfacial layer and the anisotropy of the matrix (the transition from the cube to the film). The results obtained show that changing the parameters of the matrix–particle interaction affects agglomeration, and the degradation of the percolation structure is possible. That is, with an increase in concentration, the parameters of the percolation cluster, its power, and the probability of formation, may decrease. But even more negative changes in percolation structures are observed during the transition from a volumetric matrix to films. The anisotropy of space leads to the formation of percolation through the film in certain areas at low concentrations of particles. At the same time, in a significant part of the matrix, percolation between the film surfaces will be absent, and the effect of changing the properties of MMMs in the matrix as a whole decreases. Our study explains the observed instability of MMM properties at fixed concentrations and parameters of embedded particles, including the effect of reducing the influence of particles with increasing concentration

    Percolation Effects in Mixed Matrix Membranes with Embedded Carbon Nanotubes

    No full text
    Polymeric membranes with embedded nanoparticles, e.g., nanotubes, show a significant increase in permeability of the target component while maintaining selectivity. However, the question of the reasons for this behavior of the composite membrane has not been unequivocally answered to date. In the present work, based on experimental data on the permeability of polymer membranes based on Poly(vinyl trimethylsilane) (PVTMS) with embedded CNTs, an approach to explain the abnormal behavior of such composite membranes is proposed. The presented model considered the mass transfer of gases and liquids through polymeric membranes with embedded CNTs as a parallel transport of gases through the polymeric matrix and a “percolation” cluster—bound regions around the embedded CNTs. The proposed algorithm for modeling parameters of a percolation cluster of embedded tubular particles takes into account an agglomeration and makes it possible to describe the threshold increase and subsequent decrease permeability with increasing concentration of embedded particles. The numerical simulation of such structures showed: an increase in the particle length leads to a decrease in the percolation concentration in a matrix of finite size, the power of the percolation cluster decreases significantly, but the combination of these effects leads to a decrease in the influence of the introduced particles on the properties of the matrix in the vicinity of the percolation threshold; an increase in the concentration of embedded particles leads to an increase in the probability of the formation of agglomerates and the characteristic size of the elements that make up the percolation cluster, the influence of individual particles decreases and the characteristics of the percolation transition determine the ratio of the sizes of agglomerates and matrix; and an increase in the lateral linear dimensions of the matrix leads to a nonlinear decrease in the proportion of the matrix, which is affected by the introduced particles, and the transport characteristics of such MMMs deteriorate

    Shared Bioinformatics Databases within the Unipro UGENE Platform

    No full text
    Unipro UGENE is an open-source bioinformatics toolkit that integrates popular tools along with original instruments for molecular biologists within a unified user interface. Nowadays, most bioinformatics desktop applications, including UGENE, make use of a local data model while processing different types of data. Such an approach causes an inconvenience for scientists working cooperatively and relying on the same data. This refers to the need of making multiple copies of certain files for every workplace and maintaining synchronization between them in case of modifications. Therefore, we focused on delivering a collaborative work into the UGENE user experience. Currently, several UGENE installations can be connected to a designated shared database and users can interact with it simultaneously. Such databases can be created by UGENE users and be used at their discretion. Objects of each data type, supported by UGENE such as sequences, annotations, multiple alignments, etc., can now be easily imported from or exported to a remote storage. One of the main advantages of this system, compared to existing ones, is the almost simultaneous access of client applications to shared data regardless of their volume. Moreover, the system is capable of storing millions of objects. The storage itself is a regular database server so even an inexpert user is able to deploy it. Thus, UGENE may provide access to shared data for users located, for example, in the same laboratory or institution. UGENE is available at: http://ugene.net/download.html

    Multiplicity of metastable nonergodic states of a dispersed nonwetting liquid in a disordered nanoporous medium

    No full text
    Three different metastable nonergodic states of a dispersed nonwetting liquid (water) in the Fluka 100 C8 and Fluka 100 C18 disordered porous media, as well as transitions between these states under variation of the temperature and the degree of filling, have been qualitatively described. It has been shown that the appearance of such states is due to spatial variations of the number of the nearest neighbors because of the broadening of the pore size distribution function f(R), fluctuations of various local configurations of neighbors in the system of pores, and fluctuations of a configuration of a pore and its environment consisting of filled and empty pores on a percolation cluster. These states and transitions are caused by the competition between the effective repulsion of the nonwetting liquid from the wall of the pore, which is responsible for the “extrusion” of the liquid from the pore, and the effective collective multiparticle attraction of the liquid cluster in the pore to clusters in the neighboring connected pores. The theoretical dependences obtained make it possible to qualitatively describe experimental data
    corecore