4 research outputs found

    The effect of agro-reclamation techniques on water-physical characteristics of light chestnut heavy loamy soil during rice cultivation against the background of sprinkling under the conditions of the Lower Volga region

    Get PDF
    Purpose: scientific substantiation of the use of agro-reclamation tillage practices of light chestnut heavy loamy soils in rice cultivation with periodic irrigation by sprinkling. Materials and methods. The research was conducted at the experimental site of the All-Russian Research Institute of Irrigated Agriculture in 2022–2023 with Stalingrad 1 rice crops in a two-factor experiment: factor A (soil water regime) – two options and factor B (tillage) – three options. Generally accepted methods of laying and conducting field research were used. Results. Immediately after rice sowing, the soil density in the layer of 0.0–0.6 m, varied in the range of 1.19–1.41 t/cubic m depending on the tillage practice. The minimum value of soil density in the layer of 0.0–0.6 m was formed in the A2B3 variant and amounted to 1.23 t/cubic m. The maximum soil compaction in this layer of 1.34 t/cubic m was observed in variant A1B1. During the period of full ripeness of the grain, soil compaction occurred in all tillage options. Its minimum compaction (1.34 t/cubic m), compared with the control (winter plowing), was noted with a combination of winter plowing and spring deep loosening. The minimum values of the water consumption coefficient and irrigation water loss were obtained in the A2B3 variant, and their numerical values were 851.7 and 703.6 cubic m/t, respectively. Conclusions. It was found that winter plowing to a depth of 0.25–0.27 m in combination with spring deep loosening to a depth of 0.40 m, in comparison with traditional winter plowing in one step, provides a decrease in soil density in a layer of 0.0–0.4 m by 0.10 (after sowing) and 0.12 t/cubic m (during the period of full ripeness of grain), which contributes to the yield increase to 6.95 t/ha and a reduction in irrigation water loss by 112.4 cubic m for the formation of 1 ton of grain

    Inhibitors of chloride corrosion of reinforcement steel in concrete based on derivatives of salts of carboxylic acids and dimethylaminopropylamine

    Get PDF
    In our study, we synthesised derivatives of salts of carboxylic acids and dimethylaminopropylamine: 3-(dimethylamino)propyl-1-ammonium acetate, 3-(dimethylamino)propyl-1-ammonium hexanoate, 3-(dimethylamino)propyl-1-ammonium octanoate, and 3-(dimethylamino)propyl-1-ammonium terephthalate. The structures of the molecules of the obtained substances were confirmed using physical methods: Fourier-transform infrared spectroscopy, NMR spectroscopy, and HPLC. Electrochemical methods (voltammetry and electrochemical impedance spectroscopy) and quantum chemical modeling were used to assess the inhibitory effect of the synthesised substances with regard to 35GS reinforcement steel. Experiments were conducted in a water extract from a mortar simulating concrete pore solution in the presence of chlorides inducing pitting corrosion. 3-(dimethylamino)propyl-1-ammonium terephthalate is expected to have the highest degree of protection (up to 71%) at a concentration of 2.0 g·dm–3. The highest degree of protection for the derivatives with alkyl radicals is 41–46% in a range of concentrations from 0.5 to 2.0 g·dm-3. The results of potentiodynamic measurements and quantum chemical modeling were close. Average level of degree of protection can be explained by a high concentration of chlorides in the model solution (1.00 mol·dm–3). The effectiveness of the obtained substances is to be further studied using fine-grained concrete. This will help to assess the impact of the additives on the capillary pore structure (permeability) of concrete and the concentration of chloride

    A comparison of the inhibitory activity of 3-alkyland 3-hydroxyalkyl-5-amino-1H-1,2,4-triazoles against copper corrosion in chloride-containing environments

    No full text
    Copper is widely used as a material for technical solutions in microelectronics, as well as for the manufacture of various heat exchange equipment used in aggressive environments. Corrosion inhibitors are used for the reduction of the corrosive activity of the environment. This article presents the results of a study of the anticorrosion activity of a number of derivatives of the class 3-alkyl- and 3-hydroxyalkyl-5-amino-1H-1,2,4-triazole with respect to copper corrosion in chloride-containing environment. Over the course of the study, 3-alkyl- and 3-hydroxyalkyl-5-amino-1H-1,2,4-triazoles with different lengths of the alkyl substituent were synthesized. The structure of these compounds was confirmed using NMR spectroscopy and HPLC/MS analysis. Based on the results of electrochemical and direct corrosion tests, regularities were established for the inhibitory activity of the obtained compounds in acidic (1% HCl solution) and neutral (borate buffer solution, pH = 7.4) chloride-containing media. In in a neutral media, the greatest protective effect was obtained for 3-propyl-5-amino-1H-1,2,4-triazole I, which has the shortest alkyl radical without modification by an OH group. As the concentration increased in the range from 0.01 to 10.0 mmol/L, the inhibitory activity increased. With an increase in the length of the alkyl radical and/or the introduction of an OH group, a decrease or absence of a protective effect was observed. At the same time, in an acidic medium, the introduction of a hydroxyl group into the alkyl substituent of 5-amino-1H-1,2,4-triazole increased anti-corrosion efficiency only with sufficient length of the carbon chain. The highest protection degree was obtained for 17-(5-amino-1H-1,2,4-triazol-3-yl)heptadecan-7-ol IV at a concentration of 10.0 mmol/l and it reached a value of 97%

    Evaluation of the inhibitory effect of some derivatives of salts of long-chain carboxylic acids in relation to pitting corrosion of reinforcing steel in concrete

    No full text
    Derivatives of salts of long chain carboxylic acids and dimethylaminopropylamine, including those similar in composition to vegetable oils were synthesized. The structure of the molecules of new substances was reliably confirmed using physical methods of IR-Fourier spectroscopy, NMR spectroscopy, and HPLC. The inhibitory effect of the synthesized substances on 35GS grade reinforcing steel was assessed using voltammetry. Experiments were carried out in an aqueous extract from a mortar, simulating the concrete pore solution, in the presence of chlorides as activators of pitting corrosion, as well as in samples of fine-grained concrete with periodic immersion in a chloride solution. It was found that 3-(dimethylamino)propyl-1-ammonium stearate did not exhibit an inhibitory effect. The introduction of salts of fatty acids of coconut and sunflower oils increased the anti-corrosion properties. The degree of protection was 40-44% in aqueous solutions and 30-32% for concrete samples. The time before the onset of corrosion in concrete samples was found to increase by 1.75 times compared to the control composition without additive
    corecore