4 research outputs found

    Ni-Cu-PGE-Cr-V bearing layered mafic-ultramafic intrusions of Russia - preface to a thematic issue

    Get PDF
    Layered mafic-ultramafic intrusions host some of the world’s largest ore deposits, notably in the Bushveld Complex of South Africa, the Great Dyke of Zimbabwe, and the Stillwater Complex of Montana. More than 400 intrusions have so far been discovered globally, but many remain little studied. This thematic issue contains papers on several layered intrusions from Russia (and including data on some coeval Finnish intrusions) that were presented at the 12th International Platinum Symposium in Yekaterinburg, Russia, in August 2014. This conference served as a showcase of ongoing research on Russian mafic-ultramafic intrusions and their PGE-Ni-Cu-Cr-V mineralization. Most of the intrusions remain poorly known outside Russia yet have a long history of exploration and mining going back several decades. In the present issue, papers are presented on the ∼2.5 Ga Monchepluton, the 1.85–1.88 Ga Chineysky intrusion and the 728 Ma Yoko-Dovyren intrusion, which host important Cu-Ni, V-Ti, and PGE ore deposits mined in the past and/or presently

    Re-Os Systematics in the Layered Rocks and Cu-Ni-PGE Sulfide Ores from the Dovyren Intrusive Complex in Southern Siberia, Russia: Implications for the Original Mantle Source and the Effects of Two-Stage Crustal Contamination

    No full text
    The Dovyren Intrusive Complex (Northern Baikal region, 728 ± 3 Ma) includes the dunite–troctolite–gabbronorite Yoko–Dovyren massif (YDM) associated with a sequence of underlying mafic-to-ultramafic sills, locally demonstrating interbedding relations with the most primitive rocks of the pluton. These sills and apophyses contain sulfide mineralization ranging from globular to net-textured and massive ores. Major types of the YDM cumulates and sulfide mineralization were examined for their PGE contents and Re-Os isotopic systematics. The ten analyzed samples included chilled and basal rocks, poorly mineralized troctolite, PGE-rich anorthosite, as well as three samples from a thick ore-bearing apophysis DV10 connected with the YDM. These samples yielded a Re-Os isochron with an age of 759 ± 36 Ma and an initial 187Os/188Os of 0.1309 ± 0.0026 (MSWD = 110), which is in consistent with the previously reported U–Pb zircon age. It is shown that being recalculated to γOs(t) at t = 728 Ma, these isotopic compositions demonstrate three clusters regarding the relationship between γOs(t) and 187Re/188Os: (i) the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) yielded the most radiogenic values of γOs(t) 10.5 and 10.0 among basal ultramafics, (ii) plagiodunite, troctolite, and sulfide ores showed lower radiogenic compositions, with γOs(t) ranging from 7.3 to 8.7, (iii) olivine gabbronorite, plagioperidotite, and one sample of PGE-rich anorthosite yield very primitive γOs(t) in the range 4.5 to 5.6 (on average 5.2 ± 0.6). The lowest values of γOs(t) for the least fractionated rocks of the YDM suggest a primitive mantle source, formed from a partly contaminated Neoarchean protolith, which is considered to be anomalous in Upper Riphean due to very low εNd(t) of −16 for the most primitive Dovyren magma (Fo88-parent). The highest values of γOs(t) and relative enrichment in the 34S isotope in the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) evidence that their primitive to evolved magmatic precursors could be affected by a metamorphic fluid enriched in radiogenic 187Os, originating in the exocontact halo due to the thermal decomposition of pyrite from the dehydrated country rocks. This is consistent with the second-stage contamination of the Dovyren magma by the hosting crustal rocks (probably of 10 wt% shists), generating more evolved Fo86-parent magma with higher εNd(t) of −14

    Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

    No full text
    corecore