109 research outputs found

    Clinical application of a cancer genomic profiling assay to guide precision medicine decisions

    Get PDF
    AIM: Develop and apply a comprehensive and accurate next-generation sequencing based assay to help clinicians to match oncology patients to therapies. MATERIALS and METHODS: The performance of the CANCERPLEX(R) assay was assessed using DNA from well-characterized routine clinical formalin-fixed paraffin-embedded (FFPE) specimens and cell lines. RESULTS: The maximum sensitivity of the assay is 99.5% and its accuracy is virtually 100% for detecting somatic alterations with an allele fraction of as low as 10%. Clinically actionable variants were identified in 93% of patients (930 of 1000) who underwent testing. CONCLUSION: The test\u27s capacity to determine all of the critical genetic changes, tumor mutation burden, microsatellite instability status and viral associations has important ramifications on clinical decision support strategies, including identification of patients who are likely to benefit from immune checkpoint blockage therapies

    Block of T cell development in P53-deficient mice accelerates development of lymphomas with characteristic RAG-dependent cytogenetic alterations

    Get PDF
    SummaryMice deficient in the DNA damage sensor P53 display normal T cell development but eventually succumb to thymic lymphomas. Here, we show that inactivation of the TCR β gene enhancer (Eβ) results in a block of T cell development at stages where recombination-activating genes (RAG) are expressed. Introduction of the Eβ mutation into p53−/− mice dramatically accelerates the onset of lethal thymic lymphomas that harbor RAG-dependent aberrant rearrangements, chromosome 14 and 12 translocations, and amplification of the chromosomal region 9A1–A5.3. Phenotypic and genetic analyses suggest that lymphomas emerge through a normal thymocyte development pathway. These findings provide genetic evidence that block of lymphocyte development at stages with RAG endonuclease activity can provoke lymphomagenesis on a background with deficient DNA damage responses

    Multiproxy analysis of permafrost preserved faeces provides an unprecedented insight into the diets and habitats of extinct and extant megafauna

    Get PDF
    The study of faecal samples to reconstruct the diets and habitats of extinct megafauna has traditionally relied on pollen and macrofossil analysis. DNA metabarcoding has emerged as a valuable tool to complement and refine these proxies. While published studies have compared the results of these three proxies for sediments, this comparison is currently lacking for permafrost preserved mammal faeces. Moreover, most metabarcoding studies have focused on a single plant-specific DNA marker region. In this study, we target both the commonly used chloroplast trnL P6 loop as well as nuclear ribosomal ITS (nrITS). The latter can increase taxonomic resolution of plant identifications but requires DNA to be relatively well preserved because of the target length (∼300–500 bp). We compare DNA results to pollen and macrofossil analyses from permafrost and ice-preserved faeces of Pleistocene and Holocene megafauna. Samples include woolly mammoth, horse, steppe bison as well as Holocene and extant caribou. Most plant identifications were found using DNA, likely because the studied faeces contained many vegetative remains that could not be identified using macrofossils or pollen. Several taxa were, however, identified to lower taxonomic levels uniquely with macrofossil and pollen analysis. The nrITS marker provides species level taxonomic resolution for commonly encountered plant families that are hard to distinguish using the other proxies (e.g. Asteraceae, Cyperaceae and Poaceae). Integrating the results from all proxies, we are able to accurately reconstruct known diets and habitats of the extant caribou. Applying this approach to the extinct mammals, we find that the Holocene horse and steppe bison were not strict grazers but mixed feeders living in a marshy wetland environment. The mammoths showed highly varying diets from different non-analogous habitats. This confirms the presence of a mosaic of habitats in the Pleistocene ‘mammoth steppe’ that mammoths could fully exploit due to their flexibility in food choice

    High Mutability of the Tumor Suppressor Genes RASSF1 and RBSP3 (CTDSPL) in Cancer

    Get PDF
    BACKGROUND:Many different genetic alterations are observed in cancer cells. Individual cancer genes display point mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic hypermutability of proto-oncogenes can induce development of lymphomas. METHODOLOGY/PRINCIPAL FINDINGS:We found an exceptionally high incidence of single-base mutations in the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) both located in 3p21.3 regions, LUCA and AP20 respectively. These regions contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1-2), 129 mutations were detected (mutation frequency, MF = 0.23 per 100 bp) and in 98 clones of exons 3-5 we found 146 mutations (MF = 0.29). In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10). The mutations were not cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines. CONCLUSIONS/SIGNIFICANCE:This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes involved in major human malignancies offer a novel insight in cancer development, progression and spread
    • …
    corecore