13 research outputs found

    Models of impurities in valence bond spin chains and ladders

    Full text link
    We present the class of models of a nonmagnetic impurity in S=1/2 generalized ladder with an AKLT-type valence bond ground state, and of a S=1/2 impurity in the S=1 AKLT chain. The ground state in presence of impurity can be found exactly. Recently studied phenomenon of local enhancement of antiferromagnetic correlations around the impurity is absent for this family of models.Comment: 4 pages revtex, 3 figures embedde

    Hole dynamics in an antiferromagnet across a deconfined quantum critical point

    Full text link
    We study the effects of a small density of holes, delta, on a square lattice antiferromagnet undergoing a continuous transition from a Neel state to a valence bond solid at a deconfined quantum critical point. We argue that at non-zero delta, it is likely that the critical point broadens into a non-Fermi liquid `holon metal' phase with fractionalized excitations. The holon metal phase is flanked on both sides by Fermi liquid states with Fermi surfaces enclosing the usual Luttinger area. However the electronic quasiparticles carry distinct quantum numbers in the two Fermi liquid phases, and consequently the limit of the ratio A_F/delta, as delta tends to zero (where A_F is the area of a hole pocket) has a factor of 2 discontinuity across the quantum critical point of the insulator. We demonstrate that the electronic spectrum at this transition is described by the `boundary' critical theory of an impurity coupled to a 2+1 dimensional conformal field theory. We compute the finite temperature quantum-critical electronic spectra and show that they resemble "Fermi arc" spectra seen in recent photoemission experiments on the pseudogap phase of the cuprates.Comment: 33 pages, 8 figures, Longer version of cond-mat/0611536, with additional results for electron spectrum at non-zero temperatur

    Stability of low-dimensional multicomponent Bose gases

    Full text link
    I show that in low dimensions the interactions in dilute Bose mixtures are strongly renormalized, which leads to a considerable change of stability conditions compared to the mean-field results valid in the high-density regime. Estimates are given for the two-component Bose-Hubbard model and for the Rb(87)-K(41) mixture.Comment: the final published versio

    Symmetry breaking in low-dimensional SU(N) antiferromagnets

    Full text link
    Consequences of explicit symmetry breaking in a physically motivated model of SU(N) antiferromagnet in spatial dimensions one and two are studied. It is shown that the case N=3, which can be realized in spin-1 cold atom systems, displays special properties distinctly different from those for N>=4. Qualitative form of the phase diagram depending on the model parameters is given.Comment: 10 pages, 2 figures; added references, corrected fig.2; the final version to appear in PR

    Magnetization plateaus in weakly coupled dimer spin system

    Full text link
    I study a spin system consisting of strongly coupled dimers which are in turn weakly coupled in a plane by zigzag interactions. The model can be viewed as the strong-coupling limit of a two-dimensional zigzag chain structure typical, e.g., for the (ac)(ac)-planes of KCuCl_3. It is shown that the magnetization curve in this model has plateaus at 1/3 and 2/3 of the saturation magnetization, and an additional plateau at 1/2 can appear in a certain range of the model parameters; the critical fields are calculated perturbatively. It is argued that for the three-dimensional lattice structure of the KCuCl_3 family the plateaus at 1/4 and 3/4 of the saturation can be favored in a similar way, which might be relevant to the recent experiments on NH_4CuCl_3 by Shiramura et al., J. Phys. Soc. Jpn. {\bf 67}, 1548 (1998).Comment: serious changes in Sect. II,III, final version to appear in PR

    Finite-temperature dynamical magnetic susceptibility of quasi-one-dimensional frustrated spin-1/2 Heisenberg antiferromagnets

    Full text link
    We study the dynamical response of frustrated, quasi-one-dimensional spin-1/2 Heisenberg antiferromagnets at finite temperatures. We allow for the presence of a Dzyaloshinskii-Moriya interaction. We concentrate on a model of weakly coupled planes of anisotropic triangular lattices. Combining exact results for the dynamical response of one dimensional Heisenberg chains with a Random Phase Approximation (RPA) in the frustrated interchain couplings, we calculate the dynamical susceptibility in the disordered phase. We investigate the instability of the disordered phase to the formation of collective modes. We find a very weak instability to the formation of incommensurate magnetic order and determine the ordering temperature and wave vector. We also determine the effects of uniform magnetic fields on the ordering transition.Comment: 17 pages, 17 Postscript figure
    corecore