3 research outputs found

    Atrial Fibrillation and Chronic Coronary Ischemia: A Challenging Vicious Circle

    No full text
    Atrial fibrillation, the most frequent arrhythmia in clinical practice and chronic coronary syndrome, is one of the forms of coronary ischemia to have a strong dual relationship. Atrial fibrillation may accelerate atherosclerosis and may increase oxygen consumption in the myocardium, creating a mismatch between supply and demand, thus promoting the development or worsening of coronary ischemia. Chronic coronary syndrome alters the structure and function of gap junction proteins, affecting the conduction of action potential and leading to ischemic necrosis of cardiomyocytes and their replacement with fibrous tissue, in this way sustaining the focal ectopic activity in atrial myocardium. They have many risk factors in common, such as hypertension, obesity, type 2 diabetes mellitus, and dyslipidemia. It is vital for the prognosis of patients to break this vicious circle by controlling risk factors, drug therapies, of which antithrombotic therapy may sometimes be challenging in terms of prothrombotic and bleeding risk, and interventional therapies (revascularization and catheter ablation)

    A Real Pandora’s Box in Pandemic Times: A Narrative Review on the Acute Cardiac Injury Due to COVID-19

    No full text
    The intricate relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the cardiovascular system is an extensively studied pandemic topic, as there is an ever-increasing amount of evidence that reports a high prevalence of acute cardiac injury in the context of viral infection. In patients with Coronavirus disease 2019, COVID-19, a significant increase in serum levels of cardiac troponin or other various biomarkers was observed, suggesting acute cardiac injury, thus predicting both a severe course of the disease and a poor outcome. Pathogenesis of acute cardiac injury is not yet completely elucidated, though several mechanisms are allegedly involved, such as a direct cardiomyocyte injury, oxygen supply-demand inequity caused by hypoxia, several active myocardial depressant factors during sepsis, and endothelial dysfunction due to the hyperinflammatory status. Moreover, the increased levels of plasma cytokines and catecholamines and a significantly enhanced prothrombotic environment may lead to the destabilization and rupture of atheroma plaques, subsequently triggering an acute coronary syndrome. In the present review, we focus on describing the epidemiology, pathogenesis, and role of biomarkers in the diagnosis and prognosis of patients with acute cardiac injury in the setting of the COVID-19 pandemic. We also explore some novel therapeutic strategies involving immunomodulatory therapy, as well as their role in preventing a severe form of the disease, with both the short-term outcome and the long-term cardiovascular sequelae being equally important in patients with SARS-CoV-2 induced acute cardiac injury

    Syndecan-1: From a Promising Novel Cardiac Biomarker to a Surrogate Early Predictor of Kidney and Liver Injury in Patients with Acute Heart Failure

    No full text
    (1) Background: Acute heart failure (HF) represents a complex clinical syndrome burdened by increased mortality and a high rate of systemic complications. Although natriuretic peptides (e.g., NT-proBNP) currently represent the diagnostic and prognostic gold standard in acute HF, those molecules do not accurately reflect all the pathophysiological mechanisms involved in the progression of this pathology when determined independently. Therefore, the current paradigm tends to focus on a multi-marker approach for the risk stratification of patients with acute HF. Syndecan-1 is a less studied biomarker in cardiovascular diseases; its assessment in patients with acute HF being potentially able to reflect the myocardial pathological changes, such as fibrosis, inflammation, endothelial dysfunction or global wall stress. (2) Methods: We conducted a single center prospective study that enrolled 173 patients (120 patients admitted for acute HF, compared to 53 controls with stable chronic HF). A complete standardized clinical, echocardiography and laboratory evaluation was performed at admission, including serum samples for the determination of syndecan-1 by the enzyme-linked immunosorbent assay (ELISA) method. (3) Results: The serum concentration of syndecan-1 was significantly higher in patients with acute HF, compared to controls [121.4 (69.3–257.9) vs. 72.1 (41.4–135.8) ng/mL, p = 0.015]. Syndecan-1 was a significant predictor for the diagnosis of acute HF, expressed by an area under the curve (AUC) of 0.898, similar to NT-proBNP (AUC: 0.976) or cardiac troponin (AUC: 0.839). Moreover, syndecan-1 was independently associated with impaired kidney and liver function at admission, being also a predictor for early, subclinical organ dysfunction in patients with normal biological parameters at admission. When included in the multi-marker model, syndecan-1 levels influenced mortality more significantly than NT-proBNP or troponin. A multivariable regression including syndecan-1, NT-proBNP and troponin provided additional prognostic value compared to each independent biomarker. (4) Conclusions: Syndecan-1 can be considered a promising novel biomarker in acute HF, exhibiting adequate diagnostic and prognostic value. Additionally, syndecan-1 can be used as a surrogate biomarker for non-cardiac organ dysfunction, as its highs levels can accurately reflect early acute kidney and liver injury
    corecore