34 research outputs found

    The search for novel biomarkers in sepsis-induced cardiomyopathy – A new challenge to overcome

    Get PDF
    Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and it remains the most frequent cause of death amongst critically ill patients worldwide, despite recent medical advancements. The cardiac involvement in sepsis, better known as sepsis-induced cardiomyopathy, represents a form of cardiac dysfunction identified in septic patients, characterized by ventricular dilation, myocardial involvement, decreased ejection fraction and reversibility. Although the implications of cardiac involvement in sepsis can be extremely severe, this affliction has not been intensely debated in literature. Therefore, in order to better understand this affliction, we need to identify new markers. Two biomarkers, endothelin-1 (ET-1) and the soluble form of suppression of tumorigenicity 2 protein (sST2) have previously been linked to both sepsis and acute/chronic heart failure. Endothelin-1 is part of a family of amino acid peptides, that is mainly produced by endothelial cells and exerts a vasoconstrictive effect, but also causes fibrosis of the vascular cells, stimulates production of reactive oxygen species and induces proinflammatory mechanisms. During sepsis, it induces coronary vasoconstriction, decreased cardiac output, increased vascular resistance and permeability and increased fluid flux into the extravascular space on cardiac level, as well as affecting the contractility of myocardial myocytes. High values of serum ET-1 have also been identified in septic shock and in endotoxin-induced febrile responses in rats. The Suppression of tumorigenicity 2 protein (ST2) is a member of the interleukin-1 receptor family and is involved in T helper 2 cells-associated immune response. Recent studies identified a close link between ST2 and both inflammatory and heart diseases. Furthermore, it was recently approved by the Food and Drug Administration as a prognostic biomarker in heart failure and is recommended for the evaluation of additional cardiovascular risk

    Beyond the Finish Line: The Impact and Dynamics of Biomarkers in Physical Exercise—A Narrative Review

    No full text
    The research of biomarkers continues to emerge as a developing academic field which is attracting substantial interest. The study of biomarkers proves to be useful in developing and implementing new screening methods for a wide variety of diseases including in the sports area, whether for leisure activities or professional sports. Novel research has brought into question the immune system and the limitations it may impose on sports practicing. As the well-being of athletes is a priority, the state of their immune function offers valuable information regarding their health status and their ability to continue training. The assessment of various biomarkers may contribute to a more accurate risk stratification and subsequent prevention of some invalidating or even fatal pathologies such as the sudden cardiac death. Therefore, we have reviewed several studies that included sports-related pathology or specific morphofunctional alterations for which some immune biomarkers may represent an expression of the underlying mechanism. These include the defensins, immunoglobulin A (IgA), interleukin-6 (IL-6), the tumoral necrosis factor α (TNF-α), and the white blood cells (WBC) count. Similarly, also of significant interest are various endocrine biomarkers, such as cortisol and testosterone, as well as anabolic or catabolic markers, respectively. Literature data highlight that these values are greatly influenced not only by the duration, but also by the intensity of the physical exercise; moderate training sessions actually enhance the immune function of the body, while a significant increase in both duration and intensity of sports activity acts as a deleterious factor. Therefore, in this paper we aim to highlight the importance of biomarkers’ evaluation in connection with sports activities and a subsequent more adequate approach towards personalized training regimens

    Left Ventricular Remodeling after Myocardial Infarction: From Physiopathology to Treatment

    No full text
    Myocardial infarction (MI) is the leading cause of death and morbidity worldwide, with an incidence relatively high in developed countries and rapidly growing in developing countries. The most common cause of MI is the rupture of an atherosclerotic plaque with subsequent thrombotic occlusion in the coronary circulation. This causes cardiomyocyte death and myocardial necrosis, with subsequent inflammation and fibrosis. Current therapies aim to restore coronary flow by thrombus dissolution with pharmaceutical treatment and/or intravascular stent implantation and to counteract neurohormonal activation. Despite these therapies, the injury caused by myocardial ischemia leads to left ventricular remodeling; this process involves changes in cardiac geometry, dimension and function and eventually progression to heart failure (HF). This review describes the pathophysiological mechanism that leads to cardiac remodeling and the therapeutic strategies with a role in slowing the progression of remodeling and improving cardiac structure and function

    Tubo-Ovarian Abscess with <i>Actinomyces odontolyticus</i>: Case Report and Brief Review of Literature

    No full text
    Actinomyces odontolyticus is a strictly anaerobic species, a member of the Actinomyces genus and of the commensal flora, especially oral flora, which can trigger severe infections through breaches in healthy tissue or necrotic tissue that are often hard to diagnose clinically and microbiologically. Most infections with this species are pulmonary or pleural, which might hint at a connection with poor dental hygiene, but other locations have been documented. We present a case of a tubo-ovarian abscess with a difficult identification of the etiological agent in a woman with multiple admissions, no significant comorbidities, and a longstanding use of an IUD (intrauterine device). To our knowledge, no previous case of tubo-ovarian abscess with an accurate A. odontolyticus microbiological species identification has been reported so far. This case also highlights the importance of considering an anaerobic species as an etiologic agent in an infectious process concerning a previously damaged tissue and the importance of appropriate harvesting and culturing in the accurate diagnosis of such species

    Tubo-Ovarian Abscess with Actinomyces odontolyticus: Case Report and Brief Review of Literature

    No full text
    Actinomyces odontolyticus is a strictly anaerobic species, a member of the Actinomyces genus and of the commensal flora, especially oral flora, which can trigger severe infections through breaches in healthy tissue or necrotic tissue that are often hard to diagnose clinically and microbiologically. Most infections with this species are pulmonary or pleural, which might hint at a connection with poor dental hygiene, but other locations have been documented. We present a case of a tubo-ovarian abscess with a difficult identification of the etiological agent in a woman with multiple admissions, no significant comorbidities, and a longstanding use of an IUD (intrauterine device). To our knowledge, no previous case of tubo-ovarian abscess with an accurate A. odontolyticus microbiological species identification has been reported so far. This case also highlights the importance of considering an anaerobic species as an etiologic agent in an infectious process concerning a previously damaged tissue and the importance of appropriate harvesting and culturing in the accurate diagnosis of such species

    Mixed Etiology COVID-19 Associated Pulmonary Aspergillosis (CAPA)—A Case Report and Brief Review of the Literature

    No full text
    The SARS-CoV-2 pandemic has proved to be a significant risk addition for invasive infections with Aspergillus. Even though there are plenty of data about the COVID-19-associated pulmonary aspergillosis (CAPA), especially involving Aspergillus fumigatus, recent studies are presenting cases of CAPA involving more than one species of Aspergillus. We report the first case of a SARS-CoV-2 patient associating co-infection with, most likely, Aspergillus section Fumigati and Aspergillus section Flavi from Romania, and we review the existing medical literature in order to shed light upon mixed etiology cases of CAPA. Since mortality remains high in these cases, there is an acute need for more information about the interaction between SARS-CoV-2 and Aspergillus spp., and the therapies for CAPA. The emerging number of cases and the high mortality rate must be considered an incentive for future research

    Sleep Deprivation-Induced Oxidative Stress in Rat Models: A Scoping Systematic Review

    No full text
    Sleep deprivation is highly prevalent in the modern world, possibly reaching epidemic proportions. While multiple theories regarding the roles of sleep exist (inactivity, energy conservation, restoration, brain plasticity and antioxidant), multiple unknowns still remain regarding the proposed antioxidant roles of sleep. The existing experimental evidence is often contradicting, with studies pointing both toward and against the presence of oxidative stress after sleep deprivation. The main goals of this review were to analyze the existing experimental data regarding the relationship between sleep deprivation and oxidative stress, to attempt to further clarify multiple aspects surrounding this relationship and to identify current knowledge gaps. Systematic searches were conducted in three major online databases for experimental studies performed on rat models with oxidative stress measurements, published between 2015 and 2022. A total of 54 studies were included in the review. Most results seem to point to changes in oxidative stress parameters after sleep deprivation, further suggesting an antioxidant role of sleep. Alterations in these parameters were observed in both paradoxical and total sleep deprivation protocols and in multiple rat strains. Furthermore, the effects of sleep deprivation seem to extend beyond the central nervous system, affecting multiple other body sites in the periphery. Sleep recovery seems to be characterized by an increased variability, with the presence of both normalizations in some parameters and long-lasting changes after sleep deprivation. Surprisingly, most studies revealed the presence of a stress response following sleep deprivation. However, the origin and the impact of the stress response during sleep deprivation remain somewhat unclear. While a definitive exclusion of the influence of the sleep deprivation protocol on the stress response is not possible, the available data seem to suggest that the observed stress response may be determined by sleep deprivation itself as opposed to the experimental conditions. Due to this fact, the observed oxidative changes could be attributed directly to sleep deprivation

    Myocardial Ischemia in Patients with COVID-19 Infection: Between Pathophysiological Mechanisms and Electrocardiographic Findings

    No full text
    Given the possible pathophysiological links between myocardial ischemia and SARS-CoV-2 infection, several studies have focused attention on acute coronary syndromes in order to improve patients’ morbidity and mortality. Understanding the pathophysiological aspects of myocardial ischemia in patients infected with SARS-CoV-2 can open a broad perspective on the proper management for each patient. The electrocardiogram (ECG) remains the easiest assessment of cardiac involvement in COVID-19 patients, due to its non-invasive profile, accessibility, low cost, and lack of radiation. The ECG changes provide insight into the patient’s prognosis, indicating either the worsening of an underlying cardiac illnesses or the acute direct injury by the virus. This indicates that the ECG is an important prognostic tool that can affect the outcome of COVID-19 patients, which important to correlate its aspects with the clinical characteristics and patient’s medical history. The ECG changes in myocardial ischemia include a broad spectrum in patients with COVID-19 with different cases reported of ST-segment elevation, ST-segment depression, and T wave inversion, which are associated with severe COVID-19 disease

    A Tale of Two Pandemics: Antimicrobial Resistance Patterns of <i>Enterococcus</i> spp. in COVID-19 Era

    No full text
    Although the COVID-19 pandemic has held the spotlight over the past years, the antimicrobial resistance (AMR) phenomenon continues to develop in an alarming manner. The lack of strict antibiotic regulation added to the overuse of antimicrobials fueled the AMR pandemic. This paper aims to analyze and identify the impact of the COVID-19 pandemic on antibiotic resistance patterns of Enterococcus spp. The study was designed as a retrospective observational study. Enterococcus spp. infections data were collected from one academic hospital in Cluj-Napoca, Romania over 18 months. A statistical analysis was performed to compare antibiotic resistance phenotypes identified. We recorded an increase in the isolation rates of Enterococcus spp. strains, from 26 isolates (26.53%) during Period A (November 2020–April 2021) to 42 strains (42.85%) during Period C (November 2021–April 2022). The number of strains with resistance to vancomycin increased from 8 during Period A to 17 during Period C. Of the total 36 strains with resistance to vancomycin, 25 were identified as E. faecium. SARS-CoV-2 patients (n = 29) proved to be at risk to develop an E. faecium co-infection (n = 18). We observed that strains with resistance to ampicillin (n = 20) and vancomycin (n = 15) are more often isolated from these patients. All changes identified in our study are to be considered in the light of COVID-19 pandemic, highlighting the threatening AMR phenomenon in Romania. Further studies should be performed to quantify the worldwide effects of these pandemics
    corecore