4,363 research outputs found

    Quantum magnetic oscillations and angle-resolved photoemission from impurity bands in cuprate superconductors

    Full text link
    Present-day angle-resolved photoemission spectroscopy (ARPES) has offered a tremendous advance in the understanding of electron energy spectra in cuprate superconductors and some related compounds. However, in high magnetic field, magnetic quantum oscillations at low temperatures indicate the existence of small electron (hole) Fermi pockets seemingly missing in ARPES of hole (electron) doped cuprates. Here ARPES and quantum oscillations are reconciled in the framework of an impurity band in the charge-transfer Mott-Hubbard insulator

    Normal state diamagnetism of charged bosons in cuprate superconductors

    Get PDF
    Normal state orbital diamagnetism of charged bosons quantitatively accounts for recent high-resolution magnetometery results near and above the resistive critical temperature Tc of superconducting cuprates. Our parameter-free descriptions of normal state diamagnetism, Tc, upper critical fields and specific heat anomalies unambiguously support the 3D Bose-Einstein condensation at Tc of preformed real-space pairs with zero off-diagonal order parameter above Tc, at variance with phase fluctuation (or vortex) scenarios of the "normal" state of cuprates.Comment: 10 pages, 4 figure

    Isotope effects in high-Tc cuprate superconductors: Ultimate proof for bipolaron theory of superconductivity

    Full text link
    Developing a theory of high-temperature superconductivity in copper oxides is one of the outstanding problems in physics. Twenty-five years after its discovery, no consensus on the microscopic theory has been reached despite tremendous theoretical and experimental efforts. Attempts to understand this problem are hindered by the subtle interplay among a few mechanisms and the presence of several nearly degenerate and competing phases in these systems. Here we provide unified parameter-free explanation of the observed oxygen-isotope effects on the critical temperature, the magnetic-field penetration depth, and on the normal-state pseudogap for underdoped cuprate superconductors within the framework of the bipolaron theory compatible with the strong Coulomb and Froehlich interactions, and with many other independent observations in these highly polarizable doped insulators. Remarkably, we also quantitatively explain measured critical temperatures and magnitudes of the magnetic-field penetration depth. The present work thus represents an ultimate proof of the bipolaron theory of high-temperature superconductivity, which takes into account essential Coulomb and electron-phonon interactions.Comment: 8 pages, 2 figure

    High Temperature Superconductivity: the explanation

    Full text link
    Soon after the discovery of the first high temperature superconductor by Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his own question "Is there an explanation?" [Nature v 327 (1987) 185] expressed a view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted by us in 1981, could be the one. Several authors then contemplated BEC of real space tightly bound pairs, but with a purely electronic mechanism of pairing rather than with the electron-phonon interaction (EPI). However, a number of other researchers criticized the bipolaron (or any real-space pairing) scenario as incompatible with some angle-resolved photoemission spectra (ARPES), with experimentally determined effective masses of carriers and unconventional symmetry of the superconducting order parameter in cuprates. Since then the controversial issue of whether the electron-phonon interaction (EPI) is crucial for high-temperature superconductivity or weak and inessential has been one of the most challenging problems of contemporary condensed matter physics. Here I outline some developments in the bipolaron theory suggesting that the true origin of high-temperature superconductivity is found in a proper combination of strong electron-electron correlations with a significant finite-range (Froehlich) EPI, and that the theory is fully compatible with the key experiments.Comment: 8 pages, 2 figures, invited comment to Physica Script

    Boson-fermion model beyond mean-field approximation

    Get PDF
    A model of hybridized bosons and fermions is studied beyond the mean field approximation. The divergent boson self-energy at zero temperature makes the Cooper pairing of fermions impossible.The frequency and momentum dependence of the self- energy and the condensation temperature TcT_{c} of initially localized bosons are calculated analytically. The value of the boson condensation temperature TcT_{c} is below 1K1K which rules out the boson-fermion model with the initially localized bosons as a phenomenological explanation of high-temperature superconductivity. The intra-cell density-density fermion-boson interaction dominates in the fermion self-energy. The model represents a normal metal with strongly damped bosonic excitations. The latter play the role of normal impurities.Comment: 16 pages, Latex, 5 figures available upon reques

    Superconducting Gap, Normal State Pseudogap and Tunnelling Spectra of Bosonic and Cuprate Superconductors

    Full text link
    We develop a theory of normal-metal - superconductor (NS) and superconductor - superconductor (SS) tunnelling in bosonic superconductors with strong attractive correlations taking into account coherence effects in single-particle excitation spectrum and disorder. The theory accounts for the existence of two energy scales, their temperature and doping dependencies, asymmetry and inhomogeneity of tunnelling spectra of underdoped cuprate superconductors.Comment: Final version to appear in the Physical Review Letter

    Angle-resolved photoemission spectroscopy of band tails in lightly doped cuprates

    Get PDF
    We amend ab initio strongly-correlated band structures by taking into account the band-tailing phenomenon in doped charge-transfer Mott-Hubbard insulators. We show that the photoemission from band tails accounts for sharp "quasi-particle" peaks, rapid loss of their intensities in some directions of the Brillouin zone ("Fermi-arcs") and high-energy "waterfall" anomalies as a consequence of matrix-element effects of disorder-localised states in the charge-transfer gap of doped cuprates.Comment: 4 pages, 4 figure

    Comment on `Experimental and Theoretical Constraints of Bipolaronic Superconductivity in High TcT_{c} Materials: An Impossibility'

    Full text link
    We show that objections raised by Chakraverty etet alal (Phys. Rev. Lett. 81, 433 (1998)) to the bipolaron model of superconducting cuprates are the result of an incorrect approximation for the bipolaron energy spectrum and misuse of the bipolaron theory. The consideration, which takes into account the multiband energy structure of bipolarons and the unscreened electron-phonon interaction clearly indicates that cuprates are in the Bose-Einstein condensation regime with mobile charged bosons.Comment: 1 page, no figure

    Enhanced stability of bound pairs at nonzero lattice momenta

    Full text link
    A two-body problem on the square lattice is analyzed. The interaction potential consists of strong on-site repulsion and nearest-neighbor attraction. Exact pairing conditions are derived for s-, p-, and d-symmetric bound states. The pairing conditions are strong functions of the total pair momentum K. It is found that the stability of pairs increases with K. At weak attraction, the pairs do not form at the Γ\Gamma-point but stabilize at lattice momenta close to the Brillouin zone boundary. The phase boundaries in the momentum space, which separate stable and unstable pairs are calculated. It is found that the pairs are formed easier along the (π,0)(\pi,0) direction than along the (π,π)(\pi,\pi) direction. This might lead to the appearance of ``hot pairing spots" on the Kx and Ky axes.Comment: 7 RevTEX pages, 5 figure

    Reply to the comment by C. Capan and K. Behnia on "Nernst effect in poor conductors and in the cuprate superconductors" (cond-mat/0501288)

    Full text link
    The comment criticisms (cond-mat/0501288) are completely out of line with the context of the commented theory (Phys. Rev. Lett. v.93, 217002 (2004)). The comment neglected essential parts of the theory, which actually addressed all relevant experimental observations. I argue that the coexistence of the large Nernst signal and the insulating-like in-plane resistivity in underdoped cuprates rules out the vortex scenario, but agrees remarkably well with our theory.Comment: 1 page, 1 figur
    • …
    corecore