30 research outputs found

    Rainbow Fourier Transform

    Get PDF
    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling)

    Correction of cloud optical thickness retrievals from nadir reflectances in the presence of 3D radiative effects. Part I: concept and tests on 3D RT simulations

    Get PDF
    3D effects cause substantial underestimation of cloud optical thickness (COT) in airborne and satellite retrievals based on 1D radiative transfer computations (such as in the case of widely used bispectral technique). For a single-layer isolated cloud we propose a simple linear correction of the retrieved COT with the renormalization factor dependent on the cloud’s aspect ratio (the ratio between vertical and horizontal dimensions of the cloud). This is an empirical assumption which we successfully test using synthetic 3D RT data. We introduce a heuristic “block model” of 3D radiative effects and show that the functional form of the renormalization factor is consistent with the process of radiation escape from cloud sides in an essentially 3D geometry. We also extend the block model to the case of single-layer broken cloud field with radiative interaction between the neighboring clouds. In this case the renormalization factor depends also on the distance between clouds

    Retrievals of Cloud Droplet Size from the Research Scanning Polarimeter Data: Validation Using In Situ Measurements

    Get PDF
    We present comparisons of cloud droplet size distributions (DSDs) retrieved from the research scanning polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne portion of this field experiment was based out of St. John's airport, Newfoundland, Canada with the focus of this paper being on the deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring the polarized and total reflectance in 9 spectral channels. Its uniquely high angular resolution allows for characterization of liquid water droplet sizes using the rainbow structure observed in the polarized reflectance over the scattering angle range from 135 to 165.degrees The rainbow is dominated by single scattering of light by cloud droplets, so its structure is characteristic specifically of the droplet sizes at cloud top (within unit optical depth into the cloud, equivalent to approximately 50m). A parametric fitting algorithm applied to the polarized reflectance provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, the Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution itself. The latter is important in the case of clouds with complex microphysical structure, or multiple layers of cloud, which result in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparisons between remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was near the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons generally show good agreement (better than 1 micron for effective radius and in most cases better than 0.02 for effective variance) with deviations explainable by the position of the aircraft within the cloud, or by the presence of additional cloud layers between the cloud being sampled by the in situ instrumentation and the altitude of the remote sensing segment. In the latter case, the multi-modal DSDs retrieved from the RSP data were consistent with the multi-layer cloud structures observed in the correlative High Spectral Resolution Lidar (HSRL) profiles. The results of these comparisons provide a rare validation of polarimetric droplet size retrieval techniques, demonstrating their accuracy and robustness and the potential of satellite data of this kind on a global scale

    Derivation of Vertical Profiles of Droplet Size in Cumulus Clouds from Passive Remote Sensing Observations by the Research Scanning Polarimeter

    Get PDF
    The Research Scanning Polarimeter (RSP) is an airborne along-track scanner measuring the polarized and total reflectance in 9 spectral channels. Its uniquely high angular resolution allows for characterization of liquid water cloud droplet sizes using the rainbow structure observed in the polarized reflectance over the scattering angle range from 135 to 165 degrees. Such an angular resolution coupled with high frequency of the RSP measurements also allows for geometric constraint of the cumulus cloud's 2D cross section between a number of tangent lines of view, thus, providing estimates of the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground

    Epileptic Focus in Drug-Resistant Epilepsy: Structure, Organization, and Pathophysiology

    Get PDF
    The chapter focuses on how different cutting-edge techniques can be used to study electrophysiological, pathomorphological, and biochemical changes in the “epileptic focus” area of the cerebral cortex and white matter to see how epileptic seizures become drug-resistant and how it affects the other regions of the brain. The authors highlight the significance of neuroinflammation and apoptosis in the epilepsy pathogenesis providing EEG characteristics and describing structural changes in the cortex and white matter under such conditions as focal cortical dysplasia and epileptic leukoencephalopathy. Particular focus is given to structural and functional changes in the hippocampus and the role of hippocampal sclerosis in epilepsy. Key conceptions regarding the epileptic focus formation are outlined

    Quantum flutter of supersonic particles in one-dimensional quantum liquids

    Full text link
    The non-equilibrium dynamics of strongly correlated many-body systems exhibits some of the most puzzling phenomena and challenging problems in condensed matter physics. Here we report on essentially exact results on the time evolution of an impurity injected at a finite velocity into a one-dimensional quantum liquid. We provide the first quantitative study of the formation of the correlation hole around a particle in a strongly coupled many-body quantum system, and find that the resulting correlated state does not come to a complete stop but reaches a steady state which propagates at a finite velocity. We also uncover a novel physical phenomenon when the impurity is injected at supersonic velocities: the correlation hole undergoes long-lived coherent oscillations around the impurity, an effect we call quantum flutter. We provide a detailed understanding and an intuitive physical picture of these intriguing discoveries, and propose an experimental setup where this physics can be realized and probed directly.Comment: 13 pages, 9 figure

    A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity

    Get PDF
    A robust binary hydrogen-bonded supramolecular organic framework (SOF-7) has been synthesized by solvothermal reaction of 1,4-bis-(4-(3,5-dicyano-2,6 dipyridyl)dihydropyridyl)benzene (1) and 5,5’-bis-(azanediyl)-oxalyl-diisophthalic acid (2). Single crystal X-ray diffraction analysis shows that SOF-7 comprises 2 and 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)pyridyl)benzene (3), the latter formed in situ from the oxidative dehydrogenation of 1. SOF-7 shows a three-dimensional four-fold interpenetrat-ed structure with complementary O−H···N hydrogen bonds to form channels that are decorated with cyano- and amide-groups. SOF-7 exhibits excellent thermal stability and sol-vent and moisture durability, as well as permanent porosity. The activated desolvated material SOF-7a shows high CO2 sorption capacity and selectivity compared with other po-rous organic materials assembled solely through hydrogen bonding

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Spatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset

    Get PDF
    The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol-cloud-meteorology interactions. An HU-25 Falcon and King Air conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes
    corecore