231 research outputs found
Nonnegative/binary matrix factorization with a D-Wave quantum annealer
D-Wave quantum annealers represent a novel computational architecture and
have attracted significant interest, but have been used for few real-world
computations. Machine learning has been identified as an area where quantum
annealing may be useful. Here, we show that the D-Wave 2X can be effectively
used as part of an unsupervised machine learning method. This method can be
used to analyze large datasets. The D-Wave only limits the number of features
that can be extracted from the dataset. We apply this method to learn the
features from a set of facial images
The repertoire of mutational signatures in human cancer
Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature(1). Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium(2) of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses(3-15), enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.Peer reviewe
An overview of mutational and copy number signatures in human cancer
The genome of each cell in the human body is constantly under assault from a plethora of exogenous and endogenous processes that can damage DNA. If not successfully repaired, DNA damage generally becomes permanently imprinted in cells, and all their progenies, as somatic mutations. In most cases, the patterns of these somatic mutations contain the tell-tale signs of the mutagenic processes that have imprinted and are termed mutational signatures. Recent pan-cancer genomic analyses have elucidated the compendium of mutational signatures for all types of small mutational events, including: (i) single base substitutions; (ii) doublet base substitutions; and (iii) small insertions/deletions. In contrast to small mutational events, where, in most cases, DNA damage is a prerequisite, aneuploidy, which refers to the abnormal number of chromosomes in a cell, usually develops from mistakes during DNA replication. Such mistakes include DNA replication stress, mitotic errors caused by faulty microtubule dynamics, or cohesion defects that contribute to chromosomal breakage and can lead to copy number alterations or even to structural rearrangements. These aberrations also leave behind genomic scars which can be inferred from sequencing as copy number signatures and rearrangement signatures. The analyses of mutational signatures of small mutational events have been extensively reviewed [1-3], so we will not comprehensively re-examine them here. Rather, our focus will be on summarizing the existing knowledge for mutational signatures of copy number alterations. As studying copy number signatures is an emerging field, we briefly summarize the utility that mutational signatures of small mutational events have provided in basic science, cancer treatment, and cancer prevention and we emphasize the future role that copy number signatures may play in each of these fields
Deciphering signatures of mutational processes operative in human cancer.
The genome of a cancer cell carries somatic mutations that are the cumulative consequences of the DNA damage and repair processes operative during the cellular lineage between the fertilized egg and the cancer cell. Remarkably, these mutational processes are poorly characterized. Global sequencing initiatives are yielding catalogs of somatic mutations from thousands of cancers, thus providing the unique opportunity to decipher the signatures of mutational processes operative in human cancer. However, until now there have been no theoretical models describing the signatures of mutational processes operative in cancer genomes and no systematic computational approaches are available to decipher these mutational signatures. Here, by modeling mutational processes as a blind source separation problem, we introduce a computational framework that effectively addresses these questions. Our approach provides a basis for characterizing mutational signatures from cancer-derived somatic mutational catalogs, paving the way to insights into the pathogenetic mechanism underlying all cancers
A mutational signature in gastric cancer suggests therapeutic strategies.
Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden in samples harbouring BRCA1 or BRCA2 mutations. In pancreatic cancer, all responders to platinum therapy exhibit this mutational signature including a sample that lacked any defects in BRCA1 or BRCA2. Here, we examine 10,250 cancer genomes across 36 types of cancer and demonstrate that, in addition to breast, ovarian and pancreatic cancers, gastric cancer is another cancer type that exhibits this mutational signature. Our results suggest that 7-12% of gastric cancers have defective double-strand DNA break repair by homologous recombination and may benefit from either platinum therapy or PARP inhibitors
DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation
We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA contacts. We use this effect to establish the separate contributions of transcription factor binding and DNA dynamics to transcriptional activity. Our results argue against a purely ‘transcription factor-centric’ view of transcription initiation, suggesting that both DNA dynamics and transcription factor binding are necessary conditions for transcription initiation
Recommended from our members
Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice.
Ionising radiation (IR) is a recognised carcinogen responsible for cancer development in patients previously treated using radiotherapy, and in individuals exposed as a result of accidents at nuclear energy plants. However, the mutational signatures induced by distinct types and doses of radiation are unknown. Here, we analyse the genetic architecture of mammary tumours, lymphomas and sarcomas induced by high (56Fe-ions) or low (gamma) energy radiation in mice carrying Trp53 loss of function alleles. In mammary tumours, high-energy radiation is associated with induction of focal structural variants, leading to genomic instability and Met amplification. Gamma-radiation is linked to large-scale structural variants and a point mutation signature associated with oxidative stress. The genomic architecture of carcinomas, sarcomas and lymphomas arising in the same animals are significantly different. Our study illustrates the complex interactions between radiation quality, germline Trp53 deficiency and tissue/cell of origin in shaping the genomic landscape of IR-induced tumours
The genome as a record of environmental exposure.
Whole genome sequencing of human tumours has revealed distinct patterns of mutation that hint at the causative origins of cancer. Experimental investigations of the mutations and mutation spectra induced by environmental mutagens have traditionally focused on single genes. With the advent of faster cheaper sequencing platforms, it is now possible to assess mutation spectra in experimental models across the whole genome. As a proof of principle, we have examined the whole genome mutation profiles of mouse embryo fibroblasts immortalised following exposure to benzo[a]pyrene (BaP), ultraviolet light (UV) and aristolochic acid (AA). The results reveal that each mutagen induces a characteristic mutation signature: predominantly G→T mutations for BaP, C→T and CC→TT for UV and A→T for AA. The data are not only consistent with existing knowledge but also provide additional information at higher levels of genomic organisation. The approach holds promise for identifying agents responsible for mutations in human tumours and for shedding light on the aetiology of human cancer
Recommended from our members
Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Tobacco use is the main risk factor for HNSCC, and tobacco-associated HNSCCs have poor prognosis and response to available treatments. Recently approved anti-PD-1 immune checkpoint inhibitors showed limited activity (≤20%) in HNSCC, highlighting the need to identify new therapeutic options. For this, mouse models that accurately mimic the complexity of the HNSCC mutational landscape and tumor immune environment are urgently needed. Here, we report a mouse HNSCC model system that recapitulates the human tobacco-related HNSCC mutanome, in which tumors grow when implanted in the tongue of immunocompetent mice. These HNSCC lesions have similar immune infiltration and response rates to anti-PD-1 (≤20%) immunotherapy as human HNSCCs. Remarkably, we find that >70% of HNSCC lesions respond to intratumoral anti-CTLA-4. This syngeneic HNSCC mouse model provides a platform to accelerate the development of immunotherapeutic options for HNSCC
Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA
Clustered somatic mutations are common in cancer genomes and previous analyses reveal several types of clustered single-base substitutions, which include doublet- and multi-base substitutions1–5, diffuse hypermutation termed omikli6, and longer strand-coordinated events termed kataegis3,7–9. Here we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of cancer10. Clustered mutations were highly enriched in driver genes and associated with differential gene expression and changes in overall survival. Several distinct mutational processes gave rise to clustered indels, including signatures that were enriched in tobacco smokers and homologous-recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, whereas most multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 activity6, accounted for a large proportion of clustered substitutions; however, only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fuelling the evolution of ecDNA
- …