110 research outputs found
Effects of dimensionality and anisotropy on the Holstein polaron
We apply weak-coupling perturbation theory and strong-coupling perturbation
theory to the Holstein molecular crystal model in order to elucidate the
effects of anisotropy on polaron properties in D dimensions. The ground state
energy is considered as a primary criterion through which to study the effects
of anisotropy on the self-trapping transition, the self-trapping line
associated with this transition, and the adiabatic critical point. The effects
of dimensionality and anisotropy on electron-phonon correlations and polaronic
mass enhancement are studied, with particular attention given to the polaron
radius and the characteristics of quasi-1D and quasi-2D structures.
Perturbative results are confirmed by selected comparisons with variational
calculations and quantum Monte Carlo data
Vlasov-Maxwell, self-consistent electromagnetic wave emission simulations in the solar corona
1.5D Vlasov-Maxwell simulations are employed to model electromagnetic
emission generation in a fully self-consistent plasma kinetic model for the
first time in the solar physics context. The simulations mimic the plasma
emission mechanism and Larmor drift instability in a plasma thread that
connects the Sun to Earth with the spatial scales compressed appropriately. The
effects of spatial density gradients on the generation of electromagnetic
radiation are investigated. It is shown that 1.5D inhomogeneous plasma with a
uniform background magnetic field directed transverse to the density gradient
is aperiodically unstable to Larmor-drift instability. The latter results in a
novel effect of generation of electromagnetic emission at plasma frequency.
When density gradient is removed (i.e. when plasma becomes stable to
Larmor-drift instability) and a density, super-thermal, hot beam is
injected along the domain, in the direction perpendicular to the magnetic
field, plasma emission mechanism generates non-escaping Langmuir type
oscillations which in turn generate escaping electromagnetic radiation. It is
found that in the spatial location where the beam is injected, the standing
waves, oscillating at the plasma frequency, are excited. These can be used to
interpret the horizontal strips observed in some dynamical spectra. Quasilinear
theory predictions: (i) the electron free streaming and (ii) the beam long
relaxation time, in accord with the analytic expressions, are corroborated via
direct, fully-kinetic simulation. Finally, the interplay of Larmor-drift
instability and plasma emission mechanism is studied by considering
electron beam in the Larmor-drift unstable (inhomogeneous) plasma.
http://www.maths.qmul.ac.uk/~tsiklauri/movie1.mpg *
http://www.maths.qmul.ac.uk/~tsiklauri/movie2.mpg *
http://www.maths.qmul.ac.uk/~tsiklauri/movie3.mpgComment: Solar Physics (in press, the final, accepted version
Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
We study the tunneling dynamics of dopant-induced hole polarons which are
self-localized by electron-phonon coupling in a two-dimensional antiferro-
magnet. Our treatment is based on a path integral formulation of the adia-
batic approximation, combined with many-body tight-binding, instanton, con-
strained lattice dynamics, and many-body exact diagonalization techniques. Our
results are mainly based on the Holstein- and, for comparison, on the
Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and
long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics
is mapped onto an effective low-energy Hamiltonian which takes the form of a
fermion tight-binding model with occupancy dependent, predominant- ly 2nd and
3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an
effective intersite charge interactions. Antiferromagnetic spin correlations in
the original many-electron Hamiltonian are reflected by an attractive
contribution to the 1st neighbor charge interaction and by Berry phase factors
which determine the signs of effective polaron tunneling ma- trix elements. In
the two-polaron case, these phase factors lead to polaron pair wave functions
of either -wave symmetry or p-wave symme- try with zero and
nonzero total pair momentum, respectively. Implications for the doping
dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair
condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure
On the Open-Closed B-Model
We study the coupling of the closed string to the open string in the
topological B-model. These couplings can be viewed as gauge invariant
observables in the open string field theory, or as deformations of the
differential graded algebra describing the OSFT. This is interpreted as an
intertwining map from the closed string sector to the deformation (Hochschild)
complex of the open string algebra. By an explicit calculation we show that
this map induces an isomorphism of Gerstenhaber algebras on the level of
cohomology. Reversely, this can be used to derive the closed string from the
open string. We shortly comment on generalizations to other models, such as the
A-model.Comment: LaTeX, 48 pages. Citation adde
Two-electron elastic tunneling in low-dimensional conductors
This article was published in the journal, Physical Review B [© American Physical Society]. It is also available at: http://link.aps.org/abstract/PRB/v65/e155209.We solve the Lippmann-Schwinger equation describing one-dimensional elastic scattering of preformed pairs (e.g., bipolarons) off a short-range scattering center, and find the two-particle transmission through a thin potential barrier. While the pair transmission is smaller than the single-electron transmission in the strong-coupling limit, it is remarkably larger in the weak-coupling limit. We also calculate current-voltage characteristics of a molecule-barrier-molecule junction. They show unusual temperature and voltage behaviors which are experimentally verifiable at low temperatures in bulk and nanoscale molecular conductors
Loop Quantum Gravity: An Inside View
This is a (relatively) non -- technical summary of the status of the quantum
dynamics in Loop Quantum Gravity (LQG). We explain in detail the historical
evolution of the subject and why the results obtained so far are non --
trivial. The present text can be viewed in part as a response to an article by
Nicolai, Peeters and Zamaklar [hep-th/0501114]. We also explain why certain no
go conclusions drawn from a mathematically correct calculation in a recent
paper by Helling et al [hep-th/0409182] are physically incorrect.Comment: 58 pages, no figure
The polaron-like nature of an electron coupled to phonons
When an electron interacts with phonons, the electron can exhibit either free
electron-like or polaron-like properties. The latter tends to occur for very
strong coupling, and results in a phonon cloud accompanying the electron as it
moves, thus raising its mass considerably. We summarize this behaviour for the
Holstein model in one, two and three dimensions, and note that the crossover
occurs for fairly low coupling strengths compared to those attributed to real
materials exhibiting conventional superconductivity.Comment: 5 pages; contains a summary of single particle results for the
Holstein mode
Fragmentation and Multifragmentation of 10.6A GeV Gold Nuclei
We present the results of a study performed on the interactions of 10.6A GeV
gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac-
tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec-
tile fragments. The experimental data are analyzed with particular emphasis of
target separation interactions in emulsions and study of criticalexponents.
Multiplicity distributions of the fast-moving projectile fragments are inves-
tigated. Charged fragment moments, conditional moments as well as two and three
-body asymmetries of the fast moving projectile particles are determined in
terms of the total charge remaining bound in the multiply charged projectile
fragments. Some differences in the average yields of helium nuclei and heavier
fragments are observed, which may be attributed to a target effect. However,
two and three-body asymmetries and conditional moments indicate that the
breakup mechanism of the projectile seems to be independent of target mass. We
looked for evidence of critical point observable in finite nuclei by study the
resulting charged fragments distributions. We have obtained the values for the
critical exponents gamma, beta and tau and compare our results with those at
lower energy experiment (1.0A GeV data). The values suggest that a phase
transition like behavior, is observed.Comment: latex, revtex, 28 pages, 12 figures, 3tables, submitted to Europysics
Journal
SND@LHC: The Scattering and Neutrino Detector at the LHC
SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of . The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250
- …