107 research outputs found

    Action functionals for strings in four dimensions

    Get PDF
    All possible action functionals on the space of surfaces in R4{\bf R}^4 that depend only on first and second derivatives of the functions, entering the equation of the surface, and satisfy the condition of invariance with respect to rigid motions are described.Comment: 9 pages, LaTeX, 7 figure

    Review of trends in health social media analysis

    Get PDF
    This paper surveys recent publications (2008-2017) on using social media data to study public health. The survey describes the main topics being discussed in forums and presents short information about methods and tools used for analysis health social media. We put especial attention on adverse drug reaction detection problem (ADR)

    Adverse drug extraction in twitter data using convolutional neural network

    Get PDF
    The study of health-related topics on social media has become a useful tool for the early detection of the different adverse medical conditions. In particular, it concerns cases related to the treatment of mental diseases, as the effects of medications here often prove to be unpredictable. In our research, we use convolutional neural networks (CNN) with word2vec embedding to classify user comments on Twitter. The aim of the classification is to reveal adverse drug reactions of users. The results obtained are highly promising, showing the overall usefulness of neural network algorithms in this kind of tasks

    Comparison of Two-pass Algorithms for Dynamic Topic Modelling Based on Matrix Decompositions

    Get PDF
    In this paper we present a two-pass algorithm based on different matrix decompositions, such as LSI, PCA, ICA and NMF, which allows tracking of the evolution of topics over time. The proposed dynamic topic models as output give an easily interpreted overview of topics found in a sequentially organized set of documents that does not require further processing. Each topic is presented by a user-specified number of top-terms. Such an approach to topic modeling if applied to, for example, a news article data set, can be convenient and useful for economists, sociologists, political scientists. The proposed approach allows to achieve results comparable to those obtained using complex probabilistic models, such as LDA

    Building Classifiers with GMDH for Health Social Networks (BD AskaPatient)

    Get PDF
    Health social media offer useful data for patients and doctors concerning both various medicines and treatments. Usually, these data are accompanied by their assessments in 5- star scale. But such a detail classification has small usefulness because patients and doctors, first of all, want to know about negative cases and to study in detail the extreme ones. In the paper we build classifiers of texts just for these cases using combined classes as negative, all others and worst, satisfactory, best. For this, we study possibilities of different GMDH-based algorithms and compare them with the results of other methods. The selection of GMDH is provoked by two circumstances: (a) health social media contain significant informative noise, and (b) GMDH is essentially noise-immunity method. The experimental material is the popular health social network Askapatient

    Start of Epidemy in a City: Short-Term Forecast of Covid-19 with GMDH-Based Algorithms and Official Medical Statistics

    Get PDF
    The sudden onset and quick development of an unknown epidemic may lead to tragic consequences: panic of population due to victims and unpreparedness of authorities for effectively help to population. These circumstances define extremely high requirements to the tools for short-term operational forecast. Namely, such tools should provide reliable results when model of phenomenon is unknown (factors of disease spreading) and data are limited (time series of observations). GMDH-based algorithms just meet these requirements unlike modern differential or advanced statistical models. In this study we test different algorithms from GMDH Shell platform on the example of Covid-19 epidemic in Moscow during the period March 30-April 12, 2020. The forecast horizon is from 1 to 7 days, the initial information is only the official dynamics of diseased patients. Our model is autoregression with variables of different powers. The results of forecast are compared with the accuracy of popular statistical autoregression using exponential smoothing with trend. We suppose that the proposed approach will be useful for short-term forecast at the start of epidemic due to its simplicity and reliability

    GMDH-based Models for Mid-term Forecast of Cryptocurrencies (on example of Waves)

    Get PDF
    Cryptocurrencies became one of the main trends in modern economy. However by the moment the forecast of cryptocurrencies values is an open problem, which is almost non-reflected in publications related to finance market. Reasons consist in its novelty, large volatility and its strong dependence on subjective factors. In this experimental research we show possibilities of GMDH-technology to give weekly and monthly forecast for values of cryptocurrency \u27Waves\u27 (waves/euro rate). The source information is week data covering the period 2017-2019. We tests 4 algorithms from the GMDH Shell platform on the whole period and on the crisis period 4-th quarter 2017 - 2nd quarter 2018. Baseline is provided by the popular statistical method of double exponential smoothing. The results of Pilot study can be considered as the very promising ones having in view the large variability of data

    Opinion Mining on Small and Noisy Samples of Health-Related Texts

    Get PDF
    The topic of people’s health has always attracted the attention of public and private structures, the patients themselves and, therefore, researchers. Social networks provide an immense amount of data for analysis of health- related issues; however it is not always the case that researchers have enough data to build sophisticated models. In the paper, we artificially create this lim- itation to test performance and stability of different popular algorithms on small samples of texts. There are two specificities in this research apart from the size of a sample: (a) here, instead of usual 5-star classification, we use combined classes reflecting a more practical view on medicines and treatments; (b) we consider both original and noisy data. The experiments were carried out using data extracted from the popular forum AskaPatient. For tuning parameters, GridSearchCV technique was used. The results show that in dealing with small and noisy data samples, GMDH Shell is superior to other methods. The work has a practical orientation

    Rainbow Fourier Transform

    Get PDF
    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling)
    corecore