21 research outputs found

    The Effect of Clay Type on the Physicochemical Properties of New Hydrogel Clay Nanocomposites

    Get PDF
    This study focuses on the investigation of clay type effect on the final properties of semi-interpenetrated Salecan/poly(methacrylic acid)/clay hydrogel nanocomposites. Previous studies have indicated that the presence of clay in polymer composites leads to better swelling capacity and mechanical properties as functions of clay type. On the other hand, Salecan, which is a water soluble extracellular polysaccharide, was proved to assure greater flexibility to hydrogels. These properties recommend clay and Salecan for semi-interpenetrated hydrogels preparation with specific application in biomedicine. The purpose was to determine the most suitable type of clay as well as Salecan influence for developing the desired water retention/delivery ability and mechanically enhanced semi-interpenetrating polymer network (SIPN) nanocomposites. For our investigations, we have chosen commercially available montmorillonite (ClNa) and different commercial organomodified clay (Cl30B, Cl20A and Cl15A). Several analyses results (FTIR, TGA, DMA, XRD, microscopy and swelling studies) demonstrated that not only the presence of Salecan but also the clay type influenced the structure and properties of the final nanocomposites

    Formation of Amyloid-Like Fibrils by Y-Box Binding Protein 1 (YB-1) Is Mediated by Its Cold Shock Domain and Modulated by Disordered Terminal Domains

    Get PDF
    YB-1, a multifunctional DNA- and RNA-binding nucleocytoplasmic protein, is involved in the majority of DNA- and mRNA-dependent events in the cell. It consists of three structurally different domains: its central cold shock domain has the structure of a β-barrel, while the flanking domains are predicted to be intrinsically disordered. Recently, we showed that YB-1 is capable of forming elongated fibrils under high ionic strength conditions. Here we report that it is the cold shock domain that is responsible for formation of YB-1 fibrils, while the terminal domains differentially modulate this process depending on salt conditions. We demonstrate that YB-1 fibrils have amyloid-like features, including affinity for specific dyes and a typical X-ray diffraction pattern, and that in contrast to most of amyloids, they disassemble under nearly physiological conditions

    Nanocomposites Based Electrosensitive Platforms for Nitrite and Biogenic Amines Determination

    No full text
    Highly electrosensitive platforms have been developed using different nanocomposite materials based on carbon allotropes and different metallic nanoparticles for determination of nitrite and biogenic amines (BAs). The nitrification process occurred in soil represents an important source of pollution. The nitrification consists in biological oxidation of the relatively immobile ammonium (NH4+) to highly mobile nitrate, via nitrite. This process is carried out mainly by the ammonia–oxidizing bacteria (Nitrosomonas sp. and Nitrobacter sp.) present in the soil microbial population [1,2]. The nitrite contamination of ground and surface waters represents the major concern associated with the nitrification process. Additionally, the growing needs for food and environmental safety has led to an increase in research for the detection of biogenic amines (BAs) in recent years. Despite the fact that BAs are increasingly present in food and beverages, causing toxic effects in the body, legislation that limits their presence in food chains needs to be updated, thus requiring sensitive tools for their detection [3,4]. Miniaturized analytical tools have been developed based on nanocomposite materials obtained through combination of different carbon allotrope materials (nanoribbons, nanotubes—single and multiwalled—and nanofibers) with metallic nanoparticles (Ag, Au-Ag, Pt, Cu). Thus, carbon based screen-printed electrodes (SPE) were chemically modified with the obtained nanocomposite materials and further characterized using different electrochemical techniques. In order to allow a selective and sensitive determination of analytes, an electropolymerized film was deposed on the modified sensors. For BAs determination were realized with two configurations of biosensors, a bienzymatic one consisting in immobilization of diamine oxidase (DAO) and horseradish peroxidase (HRP) onto the modified sensors, and, respectively, a mono-enzymatic system based on immobilization of DAO onto the modified sensors. It was taken into account that the charge of carbon-based nanomaterials on the surface of the sensors should not exceed 5%, in order to ensure a low based current. Morpho-structural and electrochemical characterization studies of the modified SPEs have been performed in order to achieve a high sensitivity and selectivity of detection, applying a low overvoltage. The co-polymeric film ensured a better stability of the nanocomposite material layers at the electrode surface and an optimal matrix for enzymes immobilization. Optimization of the nanocomposite-based sensors were performed, and finally detection of biogenic amines was carried out using biosensors based on single-walled carbon nanotubes and Pt nanoparticles, while nitrite determination was performed using multi-walled carbon nanotubes and AgNP modified sensors at applied potentials between −0.45 and +0.6 V vs. Ag/AgCL. The developed sensors and biosensors showed good sensitivities of nitrite and BAs detection. Although the enzyme DAO has a low enough activity to catalyze the oxidation of amine of interest, the detection limits were lowered due to the electrocatalytic activity of nanocomposite materials and the HRP enzyme used

    3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites

    No full text
    Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy

    The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids

    No full text
    Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol–gel process using hexadecyltrimethoxysilane (C16TMS) and tetramethoxysilane (TMOS) (1:4 molar ratio) as precursors. After coating, silica nanoparticles (SiO2 NPs) functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC8MS) were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO2 NPs and surface morphology on the hydrophobicity of the hybrid films were discussed. The successful functionalization of SiO2 NPs with hydrophobic alkyl groups were confirmed by Fourier transform infrared spectroscopy (FTIR). The thermal stability of hydrophobic SiO2 NPs showed that the degradation of the alkyl groups takes place in the 200–400 °C range. Bilayer coating with C16TMS/TMOS and SiO2 NPs modified with alkoxysilane substituted with C8 alkyl chain (SiO2 NP-C8) has micro/nano structure. Hydrophobicity of functionalized SiO2 NPs-C8 and its higher degree of nanometer-scale roughness gave rise to ultra-hydrophobicity performance for bilayer coating C16TMS/TMOS + SiO2 NPs-C8 (145°), compared to other similar hybrid structures. Our synthesis method for the functionalization of SiO2 NPs is useful for the modification of surface polarity and roughness
    corecore